【題目】(本小題滿分13分)

如圖,在正四面體中,分別是棱的中點.

1)求證:四邊形是平行四邊形;

2)求證:平面;

3)求證:平面.

【答案】見解析.

【解析】

試題分析:第一問應(yīng)用三角形的中位線的性質(zhì),可知四邊形的一組對邊平行且相等的,從而根據(jù)平行四邊形的判定定理,得出結(jié)果,對于第二問,注意把握線面平行的判定定理的內(nèi)容,找準平行線即可,三角形的中位線是現(xiàn)成的,對于第三問,掌握線面垂直的判定定理的內(nèi)容,找準兩條相交直線與之垂直即可,正三角形的中線和垂線是重合的,好好寫即可.

試題解析:

證明:(1)分別是棱的中點

,且 2分)

, 3分)

邊形是平行四邊形. (4分)

(2)由(1)知, (5分)

平面,平面, (7分)

平面. (8分)

(3)是正四面體,

所以它的四個面是全等的等邊三角形. (9分)

H是BC的中點,

. 11分)

又SH平面SAH,AH平面SAH,且,(12分)

平面. (13分)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出四種說法:

①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設(shè)隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過樣本點的中心( ).

其中正確的說法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;

(Ⅱ)若函數(shù)上無零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆云南省云南師范大學(xué)附屬中學(xué)高三高考適應(yīng)性月考(五)文數(shù)】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8.

有時可用函數(shù)

描述學(xué)習某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).

1) 證明:當時,掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,

.當學(xué)習某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知動點M到點的距離等于M到的距離的.

(1)求動點M的軌跡C的方程

(2)若直線軌跡C沒有交點,求的取值范圍;

(3)已知圓軌跡C相交于兩點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于CD兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD中,底面ABCD是邊長為8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱錐PABCD的體積;

(2)求證:ADPB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)0<x<1,a>0且a≠1,試比較|loga(1-x)|與|loga(1+x)|的大小

查看答案和解析>>

同步練習冊答案