分析 (1)利用圓的性質(zhì)、圓的切線的性質(zhì),可得∠ADC=∠ACB=90°.∠DCA=∠B.可得△ADC∽△ACB,即可證明.
(2)由(1)得△ADC∽△ACB.利用相似的性質(zhì)即可得出.
解答 (1)證明:連接BC.由AB為⊙O的直徑,得∠ACB=90°.
∵AD⊥CD,∴∠ADC=∠ACB=90°.
∵直線CD與⊙O相切于點(diǎn)C,
∴∠DCA=∠B.
∴△ADC∽△ACB,∴∠CAD=∠BAC.
(2)解:由(1)得△ADC∽△ACB.
∴$\frac{AD}{AC}=\frac{AC}{AB}$,∴AC2=AD•AB.
又∵AD=4,AC=6,∴AB=9.
點(diǎn)評(píng) 本題考查了圓的性質(zhì)、圓的切線的性質(zhì)、相似三角形的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 5 | C. | 3 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | M={2,3},S={(2,3)} | |
B. | M={π},S={3.14} | |
C. | M={0},S=∅ | |
D. | M={1,2,3,…,n-1,n},S={前n個(gè)非零自然數(shù)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}-1}}{2}$ | C. | 2-$\sqrt{2}$ | D. | $\sqrt{2}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com