8.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的一條漸近線與橢圓$\frac{x^2}{5}$+y2=1交于P.Q兩點(diǎn).F為橢圓右焦點(diǎn),且PF⊥QF,則雙曲線的離心率為( 。
A.$\frac{4}{15}\sqrt{15}$B.$\frac{4}{5}\sqrt{5}$C.$\sqrt{3}-1$D.$\sqrt{5}$

分析 由題意PQ=2$\sqrt{5-1}$=4,設(shè)直線PQ的方程為y=$\frac{a}$x,代入$\frac{x^2}{5}$+y2=1,可得x=±$\sqrt{\frac{5{a}^{2}}{{a}^{2}+5^{2}}}$,利用弦長(zhǎng)公式,建立方程,即可得出結(jié)論.

解答 解:由題意PQ=2$\sqrt{5-1}$=4,
設(shè)直線PQ的方程為y=$\frac{a}$x,代入$\frac{x^2}{5}$+y2=1,可得x=±$\sqrt{\frac{5{a}^{2}}{{a}^{2}+5^{2}}}$,
∴|PQ|=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$•2$\sqrt{\frac{5{a}^{2}}{{a}^{2}+5^{2}}}$=4,
∴5c2=4a2+20b2,
∴e=$\frac{c}{a}$=$\frac{4}{15}\sqrt{15}$,
故選:A.

點(diǎn)評(píng) 本題考查橢圓的方程與性質(zhì),考查雙曲線的離心率,考查弦長(zhǎng)公式,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=$\left\{\begin{array}{l}{x^{{2^{\;}}}}\\ π\(zhòng)\ 0\end{array}\right.$$\begin{array}{l},{x>0}\\,{x=0}\\,{x<0}\end{array}$,則f[f (-3)]等于( 。
A.0B.πC.π2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在R上的奇函數(shù),且f(x)在[0,+∞)上為增函數(shù),如果f(x2+ax+a)≤f(-at2-t+1)對(duì)任意x∈[1,2],任意t∈[1,2]恒成立,則實(shí)數(shù)a的最大值是( 。
A.-1B.$-\frac{1}{3}$C.$-\frac{{\sqrt{2}}}{4}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某幾何體由圓柱挖掉半個(gè)球和一個(gè)圓錐所得,三視圖中的正視圖和側(cè)視圖如圖所示,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)正四棱錐的側(cè)棱長(zhǎng)都相等,底面是正方形,其正(主)圖如圖所示,則該四棱錐側(cè)面積是(  )
A.180B.120C.60D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1,F(xiàn)1,F(xiàn)2為其左.右焦點(diǎn),直線l與橢圓相交于A、B兩點(diǎn),
(1)線段AB的中點(diǎn)為(1,$\frac{1}{2}$),求直線l的方程;
(2)直線l過點(diǎn)F1,三角形ABF2內(nèi)切圓面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等比數(shù)列{an}中,a2a9=2a5,則a6=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0)的左焦點(diǎn)F1作x軸的垂線交橢圓于點(diǎn)P,F(xiàn)2為右焦點(diǎn),若∠F1PF2=45°,則橢圓的離心率為( 。
A.2-$\sqrt{2}$B.$\sqrt{2}-1$C.3-2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如表:
     年份x20112012201320142015
儲(chǔ)蓄存款y(千億元)567810
(1)求y關(guān)于x的回歸方程$\widehat{y}$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehat$x+$\widehat{a}$
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2016年的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat{y}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{n}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\overline$$\overline{x}$
(提示:設(shè)時(shí)間代號(hào)t=x-2010)

查看答案和解析>>

同步練習(xí)冊(cè)答案