如圖,平面,,,分別為的中點.

(I)證明:平面;
(II)求與平面所成角的正弦值.
(I)只需證;(II)。

試題分析:(I)證明:連接,  在中,分別是的中點,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD。
(Ⅱ)在中,,所以
而DC平面ABC,,所以平面ABC
平面ABE, 所以平面ABE平面ABC, 所以平面ABE
由(Ⅰ)知四邊形DCQP是平行四邊形,所以
所以平面ABE, 所以直線AD在平面ABE內(nèi)的射影是AP,
所以直線AD與平面ABE所成角是
中, ,
所以。
點評:本題主要考查了空間中直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做。而對于利用向量法求線面角關(guān)鍵是正確寫出點的坐標和求解平面的一個法向量。注意計算要仔細、認真。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在棱長為1的正方體的面對角線上存在一點使得最短,則的最小值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在正方體,分別是的中點,在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在中,,延長,連接,若,且,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB

(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知長方體中, ,,則二面角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體中,MN分別是棱CD1、CC1的中點,則異面直線MA1DN所成角的余弦值是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱BD,F的中點.

(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將邊長為2的正方形ABCD沿對角線BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,

(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線BE上是否存在一點M,使得CM//平面ADE,若存在,求M的位置,不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案