分析 化函數f(x)為cosx的二次函數,根據x的取值范圍求出cosx的值域,從而求出f(x)的最小值.
解答 解:函數f(x)=1+4cosx-4sin2x
=1+4cosx-4(1-cos2x)
=4cos2x+4cosx-3
=4${(cosx+\frac{1}{2})}^{2}$-7,
由x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],得cosx∈[-$\frac{1}{2}$,1],
所以x=$\frac{2π}{3}$時,cosx=-$\frac{1}{2}$,
此時f(x)取得最小值為4×02-7=-7.
故答案為:-7.
點評 本題考查了三角函數的值域以及二次函數的最值問題,是基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $x=\frac{π}{12}$ | B. | $x=\frac{π}{6}$ | C. | $x=\frac{π}{3}$ | D. | $x=-\frac{π}{12}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | “a=2”是“函數f(x)=logax在區(qū)間(0,+∞)上為增函數”的充分不必要條件 | |
B. | 命題“若隨機變量X~N(1,4),P(X≤0)=m,則P(0<X<2)=1-2m”為真命題 | |
C. | 命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0” | |
D. | 若命題P:?n∈N,2n>1000,則?P:?n∈N,2n>1000 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若$\overrightarrow{a},\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$ | B. | |$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$| | ||
C. | |$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$| | D. | |$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$| |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com