4.下列四個(gè)命題中:
①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x-k=0有實(shí)根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若ab≠0,則a≠0”的否命題.
其中真命題的序號(hào)是( 。
A.②、③B.③、④C.①、④D.①、②

分析 ①,逆命題:三個(gè)內(nèi)角均為60°的三角形是等邊三角形;
②,原命題為真,其逆否命題與原命題同真假;
③,“全等三角形的面積相等”的否命題:不全等三角形的不面積相等;
④,“若ab=0,則a=0或b=0”.

解答 解:對(duì)于①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題:三個(gè)內(nèi)角均為60°的三角形是等邊三角形,故為真命題;
對(duì)于②,“若k>0,則方程x2+2x-k=0的△=4+4k>0,有實(shí)根”,∴原命題為真,其逆否命題與原命題同真假,故為真命題;
對(duì)于③,“全等三角形的面積相等”的否命題:不全等三角形的不面積相等,故為假命題;
對(duì)于④,“若ab≠0,則a≠0”的否命題:“若ab=0,則a=0”,故為假命題.
故選:D

點(diǎn)評(píng) 本題考查了命題的四種形式的轉(zhuǎn)換,及真假判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值是( 。
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在(0,+∞)的函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),滿足:f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$總成立,則下列不等式成立的是( 。
A.e2e+3f(e)<eπ3f(π)B.e2e+3f(π)>eπ3f(e)C.e2e+3f(π)<eπ3f(e)D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)的定義域?yàn)镽+,且對(duì)于任何正實(shí)數(shù)x、y都有f(xy)=f(x)+f(y),若f(8)=6,則f($\sqrt{2}$)=(  )
A.1B.2C.-1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線的方程為$x-\sqrt{3}y+2016=0$,則直線的傾斜角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線 f(x)=ax2-2在橫坐標(biāo)為1的點(diǎn) p處切線的傾斜角為$\frac{π}{4}$,則a=( 。
A.$\frac{1}{2}$B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,橢圓上的點(diǎn)到左焦點(diǎn)F1的距離的最大值為8,過F1的直線交橢圓C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為20,則橢圓C的方程為( 。
A.$\frac{y^2}{25}+\frac{x^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$C.$\frac{x^2}{25}+\frac{y^2}{9}=1$D.$\frac{x^2}{16}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若定義域?yàn)镽的函數(shù)f(x)滿足:對(duì)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有$\frac{{{x_2}f({x_1})-{x_1}f({x_2})}}{{{x_1}-{x_2}}}<0$,記:a=4f(0.25),b=0.5f(2),c=0.2f(5),則( 。
A.a>b>cB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若關(guān)于x的方程x2+(m-3)x+m=0有兩個(gè)不相等實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案