【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

【答案】(1),;(2).

【解析】

(1)利用極坐標(biāo)與直角坐標(biāo)互化公式即可求得直線的直角坐標(biāo)方程,將曲線C的參數(shù)方程消參數(shù)即可求得曲線的普通方程,問題得解。

(2)求出點(diǎn)的直角坐標(biāo),再利用橢圓的參數(shù)方程表示點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線距離公式及兩角差的正弦公式即可整理點(diǎn)P到直線的距離,問題得解。

(1)因?yàn)橹本的極坐標(biāo)方程為,

即ρsinθ-ρcosθ+4=0.

由x=ρcosθ,y=ρsinθ,

可得直線的直角坐標(biāo)方程為x-y-4=0.

將曲線C的參數(shù)方程消去參數(shù),

得曲線C的普通方程為

(2)設(shè)N(,sinα),α∈[0,2π).

點(diǎn)M的極坐標(biāo)(,)化為直角坐標(biāo)為(-2,2).

所以點(diǎn)P到直線的距離

所以當(dāng)時(shí),點(diǎn)M到直線的距離的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競(jìng)賽成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.

3)為了激勵(lì)同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評(píng)出一二三等獎(jiǎng),得分在內(nèi)的為一等獎(jiǎng),得分在內(nèi)的為二等獎(jiǎng), 得分在內(nèi)的為三等獎(jiǎng).若將頻率視為概率,現(xiàn)從考生中隨機(jī)抽取三名,設(shè)為獲得三等獎(jiǎng)的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)上的減函數(shù),,且.

1)求;

2)若上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;

3)當(dāng)時(shí),有最大值1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的值域?yàn)?/span>,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某地某年月平均氣溫(華氏度):

月份

1

2

3

4

5

6

7

8

9

10

11

12

平均氣溫

21.4

26.0

36.0

48.8

59.1

68.6

73.0

71.9

64.7

53.5

39.8

27.7

以月份為x軸(月份),以平均氣溫為y.

1)用正弦曲線去擬合這些數(shù)據(jù);

2)估計(jì)這個(gè)正弦曲線的周期T和振幅A;

3)下面三個(gè)函數(shù)模型中,哪一個(gè)最適合這些數(shù)據(jù)?

;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復(fù)平面上的四個(gè)點(diǎn),且向量對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2為實(shí)數(shù),a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的每天固定成木為30000元,每生產(chǎn)x件,需另投入成本為t元, ,每件產(chǎn)品售價(jià)為10000元.(該新產(chǎn)品在市場(chǎng)上供不應(yīng)求可全部賣完.)

(1)寫出每天利潤(rùn)y關(guān)于每天產(chǎn)量x的函數(shù)解析式;

(2)當(dāng)每天產(chǎn)量為多少件時(shí),該公司在這一新產(chǎn)品的生產(chǎn)中每天所獲利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針方向)3圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)開始計(jì)時(shí),即從圖中點(diǎn)開始計(jì)算時(shí)間.

(1)當(dāng)秒時(shí)點(diǎn)離水面的高度_________

(2)將點(diǎn)距離水面的高度(單位: )表示為時(shí)間(單位: )的函數(shù),則此函數(shù)表達(dá)式為_______________ .

查看答案和解析>>

同步練習(xí)冊(cè)答案