【題目】已知數(shù)列的通項(xiàng)公式為,數(shù)列的通項(xiàng)公式為,設(shè),若在數(shù)列中,對(duì)任意恒成立,則實(shí)數(shù)的取值范圍是_________.

【答案】

【解析】

首先分析題意,可知是取中的最大值,且是該數(shù)列中的最小項(xiàng),結(jié)合數(shù)列的單調(diào)性和數(shù)列的單調(diào)性可得出,代入數(shù)列的通項(xiàng)公式即可求出實(shí)數(shù)的取值范圍.

由題意可知,是取中的最大值,且是數(shù)列中的最小項(xiàng).

,則,則前面不會(huì)有數(shù)列的項(xiàng),

由于數(shù)列是單調(diào)遞減數(shù)列,數(shù)列是單調(diào)遞增數(shù)列.

,

數(shù)列單調(diào)遞減,當(dāng)時(shí),必有,即.

此時(shí),應(yīng)有,,即,解得.

,即,得,此時(shí);

,則,同理,前面不能有數(shù)列的項(xiàng),

,當(dāng)時(shí),數(shù)列單調(diào)遞增,數(shù)列單調(diào)遞減,

.

當(dāng)時(shí),,由,即,解得.

,得,解得,此時(shí).

綜上所述,實(shí)數(shù)的取值范圍是.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是函數(shù)的一個(gè)極值點(diǎn).

(1)求的關(guān)系式(用表示

(2)求的單調(diào)區(qū)間;

(3)設(shè),若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】男運(yùn)動(dòng)員名,女運(yùn)動(dòng)員名,其中男女隊(duì)長(zhǎng)各人,從中選人外出比賽,分別求出下列情形有多少種選派方法?(以數(shù)字作答)

名,女名;

隊(duì)長(zhǎng)至少有人參加;

至少名女運(yùn)動(dòng)員;

既要有隊(duì)長(zhǎng),又要有女運(yùn)動(dòng)員.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乙兩人各射擊一次,擊中目標(biāo)的概率分別是. 假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每次射擊是否擊中目標(biāo),相互之間沒有影響.

(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;

(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;

(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊. 問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按下列要求分配6本不同的書,各有多少種不同的分配方式?

(1)分成三份,1份1本,1份2本,1份3本;

(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;

(3)平均分成三份,每份2本;

(4)平均分配給甲、乙、丙三人,每人2本;

(5)分成三份,1份4本,另外兩份每份1本;

(6)甲、乙、丙三人中,一人得4本,另外兩人每人得1本;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中邊長(zhǎng)AB為2,P為正方形A1B1C1D1四邊上的動(dòng)點(diǎn),O為底面正方形ABCD的中心,Q為正方形ABCD內(nèi)一點(diǎn),M,N分別為AB,BC上靠近A和C的三等分點(diǎn),若線段與OP相交且互相平分,則點(diǎn)Q的軌跡與線段MN形成的封閉圖形的面積為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)增區(qū)間;

(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且,其中為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)的最大值;

(2)證明 :.

查看答案和解析>>

同步練習(xí)冊(cè)答案