請(qǐng)?zhí)砑右怀湟獥l件使下述結(jié)論成立:

ab     ,則a2b2

 

答案:a+b>0
提示:

a2b2a2b20

故只需ab0.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、給定項(xiàng)數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個(gè)正整數(shù)k(2≤k≤m-1),若數(shù)列{an}中存在連續(xù)的k項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的k項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列{an}是“k階可重復(fù)數(shù)列”,例如數(shù)列{an}:0,1,1,0,1,1,0.因?yàn)閍1,a2,a3,a4與a4,a5,a6,a7按次序?qū)?yīng)相等,所以數(shù)列{an}是“4階可重復(fù)數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復(fù)數(shù)列”?如果是,請(qǐng)寫(xiě)出重復(fù)的這5項(xiàng);
(Ⅱ)若數(shù)為m的數(shù)列{an}一定是“3階可重復(fù)數(shù)列”,則m的最小值是多少?說(shuō)明理由;
(Ⅲ)假設(shè)數(shù)列{an}不是“5階可重復(fù)數(shù)列”,若在其最后一項(xiàng)am后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,且a4=1,求數(shù)列{an}的最后一項(xiàng)am的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a,b應(yīng)滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時(shí)M點(diǎn)的坐標(biāo);
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)的有奇數(shù)個(gè)”是否正確?若正確,給出證明,并舉一例;若不正確,請(qǐng)舉一反例說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

請(qǐng)?zhí)砑右怀湟獥l件使下述結(jié)論成立:

ab     ,則a2b2;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案