2.下列各式中,表達(dá)錯誤的是( 。
A.∅⊆{x|x<4}B.$2\sqrt{3}∈\left\{{x|x<4}\right\}$C.∅∈{∅,{0},{1}}D.$\left\{{2\sqrt{3}}\right\}∈\left\{{x|x<4}\right\}$

分析 直接利用元素與集合的關(guān)系,集合與集合的包含關(guān)系判斷選項(xiàng)即可.

解答 解:∅⊆{x|x<4},滿足集合的包含關(guān)系,正確;
∅∈{∅,{0},{1}}滿足元素與集合的關(guān)系,正確;
$2\sqrt{3}∈${x|x<4},滿足元素與集合的關(guān)系,{2$\sqrt{3}$}∈{x|x<4},
不滿足集合與集合的包含關(guān)系,錯誤.
故選:D.

點(diǎn)評 本題考查元素與集合,集合與集合的包含關(guān)系,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線x+y=1與曲線y=$\sqrt{a-{x^2}}$(a>0)恰有一個公共點(diǎn),則a的取值范圍是( 。
A.$\frac{1}{2}$<a<1B.$\frac{1}{2}$≤a<1C.a>1或$a=\frac{1}{2}$D.$a=\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x),對任意實(shí)數(shù)m,n滿足f(m+n)=f(m)f(n),且f(1)=a(a≠0),則f(n)=an(n∈N +).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=1+$\frac{2x+sinx}{{{x^2}+1}}$,若f(x)的最大值和最小值分別為M和N,則M+N等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=ax3-2x的圖象過點(diǎn)(-1,4)則a=( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={0,1,2,5,6,7},N={2,3,5,7},若P=M∩N,則P的真子集個數(shù)為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù):
房屋面積x(m211511080135105
銷售價格y(萬元)24.821.618.429.222
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線.
(參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\overline{y}$=$\stackrel{∧}$$\overline{x}$+$\stackrel{∧}{a}$,其中$\sum_{i=1}^{5}{{x}_{i}}^{2}$=60975,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=12952.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(logaba)2+(logabb)•(logab(a2b))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{cos\frac{πx}{3},x≥0}\\{-(x+\frac{4}{x}),x<0}\end{array}}\right.$,則f(f(-2))=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案