【題目】已知函數(shù) .

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實數(shù),使得至少有一個,使成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

【答案】1見解析

【解析】試題分析:(1)首先求函數(shù)的導(dǎo)數(shù),再通分,得到 根據(jù)解不等式,得到函數(shù)單調(diào)區(qū)間;(2)首先求存在性命題的否定,即成立,將不等式轉(zhuǎn)化為恒成立,設(shè) ,根據(jù)函數(shù)的導(dǎo)數(shù),分 ,求得函數(shù)的最小值,令最小值大于等于0,求得的取值范圍,再求其補(bǔ)集.

試題解析:1)函數(shù)的定義域為,

1當(dāng)時,由得, ,由

故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為

2)當(dāng)時, 的單調(diào)增區(qū)間為

(Ⅱ)先考慮“至少有一個,使成立”的否定“ 恒成立”。即可轉(zhuǎn)化為恒成立。

,則只需恒成立即可,

當(dāng)時,在時, ,在時,

的最小值為,由

故當(dāng)時, 恒成立,

當(dāng)時, , 不能恒成立,

當(dāng)時,取,有, 不能恒成立,

綜上所述,即時,至少有一個,使成立。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

1討論的單調(diào)性;

(2)當(dāng)時,設(shè)函數(shù)表示在區(qū)間上最大值與最小值的差,求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若曲線在點 處的切線方程為.

(Ⅰ)求的解析式;

(Ⅱ)求證:在曲線上任意一點處的切線與直線所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)業(yè)園區(qū)新引進(jìn)一家生產(chǎn)環(huán)保產(chǎn)品的公司,已知該環(huán)保產(chǎn)品每售出1盒的利潤為0.3萬元,當(dāng)月未售出的環(huán)保產(chǎn)品,每盒虧損0.12萬元.根據(jù)統(tǒng)計資料,該環(huán)保產(chǎn)品的市場月需求量的頻率分布直方圖如圖所示.

1)若該環(huán)保產(chǎn)品的月進(jìn)貨量為160盒,以(單位:盒,)表示該產(chǎn)品一個月內(nèi)的市場需求量,(單位:萬元)表示該公司生產(chǎn)該環(huán)保產(chǎn)品的月利潤.

①將表示為的函數(shù);

②根據(jù)頻率分布直方圖估計利潤不少于39.6萬元的概率.

2)在頻率分布直方圖的月需求量分組中,以各組的區(qū)間中點值代表該組的月需求量,當(dāng)月進(jìn)貨量為158箱時,寫出月利潤(單位:萬元)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosx,2cosx),2cosx,sinx),fx

1)把fx)的圖象向右平移個單位得gx)的圖象,求gx)的單調(diào)遞增區(qū)間;

2)當(dāng)共線時,求fx)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。

求證:(1)PA∥平面BDE ;

(2)平面PAC平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

同步練習(xí)冊答案