設(shè)y=f(x)為三次函數(shù),且圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x=時(shí),f(x)的極小值為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)圖象上任意兩點(diǎn)的連線的斜率恒大于0.
【答案】分析:(1)先利用待定系數(shù)法設(shè)出f(x)的解析式,再根據(jù)奇偶性以及極值建立等式關(guān)系,求出參數(shù)即可;
(2)先利用導(dǎo)數(shù)研究函數(shù)在(1,+∞)上的單調(diào)性,任設(shè)兩點(diǎn)并規(guī)定大小,表示出斜率即可判斷符號(hào).
解答:解:(Ⅰ)設(shè)f(x)=ax3+bx2+cx+d(a≠0)
∵其圖象關(guān)于原點(diǎn)對(duì)稱,即f(-x)=-f(x)
得-ax3+bx2-cx+d=-ax3-bx2-cx-d
∴b=d=0,
則有f(x)=ax3+cx
由f′(x)=3ax2+c,依題意得f′()=0

f()=②(5分)
由①②得a=4,c=-3故所求的解析式為:f(x)=4x3-3x.(6分)
(Ⅱ)由f′(x)=12x2-3>0
解得:x>或x<(8分)
∵(1,+∞)?(,+∞)
∴x∈(1,+∞)時(shí),函數(shù)f(x)單調(diào)遞增;(10分)
設(shè)(x1,y1),(x2,y2)是x∈(1,+∞)時(shí),
函數(shù)f(x)圖象上任意兩點(diǎn),
且x2>x1,則有y2>y1
∴過這兩點(diǎn)的直線的斜率.(12分)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及直線的斜率的求解,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)為三次函數(shù),且圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x=
12
時(shí),f(x)的極小值為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)圖象上任意兩點(diǎn)的連線的斜率恒大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''是f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請(qǐng)你根據(jù)這一發(fā)現(xiàn),求:
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
對(duì)稱中心為
(
1
2
,1)
(
1
2
,1)
;
(2)計(jì)算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)y=f(x)為三次函數(shù),且圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x=
1
2
時(shí),f(x)的極小值為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)圖象上任意兩點(diǎn)的連線的斜率恒大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省湛江市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)y=f(x)為三次函數(shù),且圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x=時(shí),f(x)的極小值為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)圖象上任意兩點(diǎn)的連線的斜率恒大于0.

查看答案和解析>>

同步練習(xí)冊(cè)答案