某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號加強中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點,邊界線滿足
()百米,百米.

(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當取何值時?整個中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.

(1);(2):當米時,整個中轉(zhuǎn)站的占地面積最小,最小面積是平方米.

解析試題分析:(1)要求函數(shù)關系式,實際上是建立起之間的等量關系,分析圖形及已知條件,我們可借助于三角形有面積,,從這個等式中,解出,即得要求的函數(shù)式;(2)有了(1)中的關系式,就可表示為一個字母的式子,它是一個分式函數(shù),由于分母是一次,而分子是二次的,故可這樣變形,正好這個表達式可以用基本不等式來求得最小值.
試題解析:(1)結(jié)合圖形可知,
于是,,
解得
(2)由(1)知,,
因此,

(當且僅當,即時,等號成立).
答:當米時,整個中轉(zhuǎn)站的占地面積最小,最小面積是平方米.12分
考點:求函數(shù)解析式,三角形的面積公式,分式函數(shù)的最值與基本不等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=xm且f(4)=.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數(shù)x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數(shù)g(x)=f(x)-mx (x∈R)是單調(diào)函數(shù),求證:m≤0或m≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列,每年發(fā)放的電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;
(2)從2013年算起,求二十年發(fā)放的汽車牌照總量.



     
       
   

3
     
        
   
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司以每噸10萬元的價格銷售某種產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價格上漲x%,則每年的銷售數(shù)量將減少,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售的總金額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個3米的進出口(如圖).設矩形的長為米,鋼筋網(wǎng)的總長度為米.

(1)列出的函數(shù)關系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最?
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

要在墻上開一個上半部為半圓形、下部為矩形的窗戶(如圖所示),在窗框為定長的條件下,要使窗戶能夠透過最多的光線,窗戶應設計成怎樣的尺寸?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2+mx+n的圖象過點(1,3),且f(-1+x)=f(-1-x)對任意實數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關于原點對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案