12.已知集合A={1,2},B={a,a2+3}.若A∩B={1},則實(shí)數(shù)a的值為1.

分析 利用交集定義直接求解.

解答 解:∵集合A={1,2},B={a,a2+3}.A∩B={1},
∴a=1或a2+3=1,
解得a=1.
故答案為:1.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義及性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列{an}的公差d<0,且a${\;}_{1}^{2}$=a${\;}_{17}^{2}$,則數(shù)列{an}的前n項和Sn取得最大時的項數(shù)n是( 。
A.8或9B.9或10C.10或11D.11或12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2,a∈R,
(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(2)設(shè)函數(shù)g(x)=f(x)+(x-a)cosx-sinx,討論g(x)的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線y=x2+$\frac{1}{x}$在點(diǎn)(1,2)處的切線方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{2x+3y-3≤0}\\{2x-3y+3≥0}\\{y+3≥0}\end{array}\right.$,則z=2x+y的最小值是( 。
A.-15B.-9C.1D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=3x-($\frac{1}{3}$)x,則f(x)( 。
A.是偶函數(shù),且在R上是增函數(shù)B.是奇函數(shù),且在R上是增函數(shù)
C.是偶函數(shù),且在R上是減函數(shù)D.是奇函數(shù),且在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果一扇形的弧長變?yōu)樵瓉淼?\frac{3}{2}$倍,半徑變?yōu)樵瓉淼囊话,則該扇形的面積為原扇形面積的$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知隨機(jī)變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<$\frac{1}{2}$,則( 。
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

查看答案和解析>>

同步練習(xí)冊答案