【題目】定義行列式運(yùn)算 =a1b2﹣a2b1 , 將函數(shù)f(x)= 的圖象向左平移t(t>0)個(gè)單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則t的最小值為(
A.
B.
C.
D.

【答案】C
【解析】解:f(x)= = ,它的圖象向左平移t(t>0)個(gè)單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),函數(shù)為: ,∴t+ =π時(shí),t最小,所以t的最小值為:
故選C.
【考點(diǎn)精析】利用正弦函數(shù)的奇偶性和函數(shù)y=Asin(ωx+φ)的圖象變換對題目進(jìn)行判斷即可得到答案,需要熟知正弦函數(shù)為奇函數(shù);圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比不等于1的等比數(shù)列{an},滿足:a3=3,S3=9,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2 , 若cn= , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點(diǎn)P,使過P所作的圓的兩條切線相互垂直,則實(shí)數(shù)k的取值范圍是(  )

A. (-∞,-2) B. [-2,2]

C. [-,] D. (-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E,F(xiàn)分別是AB,AP的中點(diǎn).

(1)求證:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,過點(diǎn)的直線與橢圓交于兩點(diǎn).

1若直線的斜率為1, ,求橢圓的標(biāo)準(zhǔn)方程;

21中橢圓的右頂點(diǎn)為,直線的傾斜角為,問為何值時(shí),取得最大值,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),則點(diǎn)P到直線AB的距離最大值為( )

A. B. C. 6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案