已知函數(shù)f(x)=(m2+m+1)xm2-2m-1是冪函數(shù)且是偶函數(shù),求實(shí)數(shù)m的值為
-1
-1
分析:根據(jù)冪函數(shù)的系數(shù)一定為1可先確定參數(shù)m的值,再根據(jù)奇偶性進(jìn)行驗(yàn)證,可得答案.
解答:解:∵函數(shù)f(x)=(m2+m+1)x m2-2m-1是冪函數(shù)
∴可得m2+m+1=1,解得m=-1或0,
當(dāng)m=-1時(shí),函數(shù)為f(x)=x2,是偶函數(shù),滿足題意,
當(dāng)m=0時(shí),函數(shù)為f(x)=x-1在其定義域上是奇函數(shù),不是偶函數(shù),不滿足條件.
故答案為:-1.
點(diǎn)評(píng):本題主要考查冪函數(shù)的表達(dá)形式以及冪函數(shù)的奇偶性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�