【題目】已知圓經(jīng)過橢圓的右頂點、下頂點和上頂點.
(1)求圓的標準方程;
(2)直線經(jīng)過點且與垂直,是直線上的動點,過點作圓的切線,切點分別為,求四邊形面積的最小值.
【答案】(1) . (2)
【解析】
(1)根據(jù)圓心必在圓上兩點連線的中垂線上可知圓心必在軸上,設(shè)圓心,可得半徑,利用圓心到圓上點的距離等于半徑可構(gòu)造方程求得圓心和半徑,從而得到圓的方程;(2)根據(jù)兩直線垂直可求得直線的方程,利用可知當(dāng)四邊形面積最小時,取最小值;當(dāng)切線長最小時,;利用點到直線距離公式和勾股定理可求得的最小值,代入可得面積的最小值.
(1)由橢圓方程得:,,
由圓過可知:圓心必在軸上
設(shè)圓心為,則半徑
,解得: 圓心為,半徑
圓的標準方程為:
(2)直線與垂直
直線方程為:,即:
且
當(dāng)取最小值時,最小
又且當(dāng)時,最小
四邊形面積的最小值為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺機床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲機床 | 8 | 12 | 40 | 32 | 8 |
乙機床 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的利潤(單位:元);
(3)從甲、乙機床生產(chǎn)的零件指標在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2017年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進行技術(shù)改造,預(yù)測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).
(1)設(shè)從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求,的表達式;
(2)依上述預(yù)測,從2018年起該企業(yè)至少經(jīng)過多少年,進行技術(shù)改造后的累計利潤超過不進行技術(shù)改造的累計純利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面是某市環(huán)保局連續(xù)30天對空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù):
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(1)完成下面的頻率分布表;
(2)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中的值;
(3)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)的概率.
分組 | 頻數(shù) | 頻率 |
[41,51) | 2 | |
[51,61) | 3 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | ||
[91,101) | 3 | |
[101,111) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(x0,y0)(x0≠)在橢圓C:(a>b>0)上,若點M為橢圓C的右頂點,且PO⊥PM (O為坐標原點),則橢圓C的離心率e的取值范圍是
A. (0,) B. (0,1) C. (,1) D. (0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前某地區(qū)有100萬人,經(jīng)過x年后為y萬人,如果年平均增長率是1.2%,請回答下列問題:
(1)試推算出y關(guān)于x的函數(shù)關(guān)系式;
(2)計算10年后該地區(qū)的人口總數(shù)(精確到0.1萬人);
(3)計算大約多少年后該地區(qū)的人口總數(shù)會達到120萬(精確到1年).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線(為參數(shù)),曲線(為參數(shù)),以原點為極點, 軸的正半軸為極軸建立坐標系.
(1)寫出直線的普通方程與曲線的極坐標方程;
(2)設(shè)直線與曲線交于, 兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列函數(shù)的奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高校學(xué)生平均每天使用手機的時間長短是否與性別有關(guān),某調(diào)查小組隨機抽取了25 名男生、10名女生進行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:
平均每天使用手機小時 | 平均每天使用手機小時 | 合計 | |
男生 | 15 | 10 | 25 |
女生 | 3 | 7 | 10 |
合計 | 18 | 17 | 35 |
(I) 根據(jù)列聯(lián)表判斷,是否有90%的把握認為學(xué)生使用手機的時間長短與性別有關(guān);
(II)在參與調(diào)查的平均每天使用手機不超過3小時的10名男生中,有6人使用國產(chǎn)手機,從這10名男生中任意選取3人,求這3人中使用國產(chǎn)手機的人數(shù)的分布列和數(shù)學(xué)期望.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com