在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,則曲線C的極坐標(biāo)方程可寫為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:先求出曲線C的普通方程,再利用x=ρcosθ,y=ρsinθ代換求得極坐標(biāo)方程.
解答: 解:由
y=sinθ+1
x=cosθ
得,
y-1=sinθ
x=cosθ
,
兩式平方后相加得x2+(y-1)2=1,
∴曲線C是以(0,1)為圓心,半徑等于的圓.
令x=ρcosθ,y=ρsinθ,代入并整理得ρ=2sinθ.
即曲線C的極坐標(biāo)方程是ρ=2sinθ.
故答案為:ρ=2sinθ.
點(diǎn)評(píng):本題主要考查極坐標(biāo)方程、參數(shù)方程及直角坐標(biāo)方程之間的相互轉(zhuǎn)化,普通方程化為極坐標(biāo)方程關(guān)鍵是利用公式x=ρcosθ,y=ρsinθ進(jìn)程轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求數(shù)列{
1
n(n+1)
}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等腰三角形ABC中,兩底角B、C的正弦值為
5
13
,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-x2,x≤1
ex-1,x>1
,則不等式f(x)>1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3+ax2-2x+5在區(qū)間(
1
3
,
1
2
)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A1B1C1中,AB=BC=
2
,BB1=2,∠ABC=90°,E、F分別為AA1,C1B1的中點(diǎn),沿棱柱表面,從E到F的最短路徑的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若焦點(diǎn)在x軸上的橢圓
x2
3
+
y2
n
=1的離心率是
1
2
,則n等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)O為△ABC外接圓的圓心,且
OA
+
OB
+
CO
=0,則△ABC的內(nèi)角A等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合A,若滿足:a∈A,且a-1∉A,a+1∉A,則稱a為集合A的“孤立元素”,則集合M={1,2,3,…,10}的無(wú)“孤立元素”的含4個(gè)元素的子集個(gè)數(shù)共有(  )
A、28B、36C、49D、175

查看答案和解析>>

同步練習(xí)冊(cè)答案