11.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x的值為-1.

分析 利用兩個向量共線的性質(zhì)列出方程求得x的值.

解答 解:向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,2),
當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時,-2x-1×2=0,
解得x=-1,
所以實(shí)數(shù)x的值為-1.
故答案為:-1.

點(diǎn)評 本題主要考查兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=Asin(ωx+φ),x∈R,(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)描述函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換而得到;
(Ⅲ)若f($\frac{α}{2}$)=$\frac{10}{13}$($\frac{π}{3}$<α<$\frac{5π}{6}$),求tan2(α-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《九章算術(shù)》是我國古代第一部數(shù)學(xué)專著,全書收集了246個問題及其解法,其中一個問題為“現(xiàn)有一根九節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面四節(jié)容積之和為3升,下面三節(jié)的容積之和為4升,求中間兩節(jié)的容積各為多少?”該問題中第2節(jié),第3節(jié),第8節(jié)竹子的容積之和為( 。
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=4+sinα\end{array}\right.$,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C2的方程為ρ(cosθ-msinθ)+1=0(m為常數(shù)).
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)設(shè)P點(diǎn)是C1上到x軸距離最小的點(diǎn),當(dāng)C2過點(diǎn)P時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),出行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還.”其大意為:“有一人走了378里路,第一天健步行走,從第二天起因腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”問此人最后一天走了( 。
A.6里B.12里C.24里D.36里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.2016年雙十一期間,某電子產(chǎn)品銷售商促銷某種電子產(chǎn)品,該產(chǎn)品的成本為2元/件,通過市場分析,雙十一期間該電子產(chǎn)品銷售量y(單位:千件)與銷售價格x(單位:元)之間滿足關(guān)系式:y=$\frac{a}{x-2}$+2x2-35x+170(其中2<x<8,a為常數(shù)),且已知當(dāng)銷售價格為3元/件時,該電子產(chǎn)品銷售量為89千件.
(Ⅰ)求實(shí)數(shù)a的值及雙十一期間銷售該電子產(chǎn)品獲得的總利潤L(x);
(Ⅱ)銷售價格x為多少時,所獲得的總利潤L(x)最大?并求出總利潤L(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{lnx}{x},g(x)=x({lnx-\frac{ax}{2}-1})$.
(1)求y=f(x)的最大值;
(2)當(dāng)$a∈[{0,\frac{1}{e}}]$時,函數(shù)y=g(x),(x∈(0,e])有最小值. 記g(x)的最小值為h(a),求函
數(shù)h(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若f(x)=loga(2+x)在區(qū)間(-2,+∞)是單調(diào)遞減函數(shù),則a的取值范圍是( 。
A.(0,1)B.(0,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列語句是假命題的是( 。
A.正方形的四條邊相等B.若x=0,則xy=0
C.$\sqrt{3}∈N$D.負(fù)數(shù)的平方是正數(shù)

查看答案和解析>>

同步練習(xí)冊答案