已知函數(shù)f(x)=
1
x
-lnx
,正實數(shù)a、b、c滿足f(c)<0<f(a)<f(b),若實數(shù)d是函數(shù)f(x)的一個零點(diǎn),那么下列四個判斷:
①d<a;②d>b;③d<c;④d>c.其中可能成立的個數(shù)為(  )
A、1B、2C、3D、4
分析:利用零點(diǎn)就是兩函數(shù)圖象的交點(diǎn),再利用圖象得結(jié)論.
解答:精英家教網(wǎng)解:因為函數(shù)f(x)=
1
x
-lnx
在(0,+∞)上是減函數(shù),
又因為f(c)<0<f(a)<f(b),所以a<b<c,
又因為零點(diǎn)就是兩函數(shù)圖象的交點(diǎn),
在同一坐標(biāo)系內(nèi)畫出函數(shù)y=
1
x
與y=lnx的圖象,
如圖a、b、c,d的位置如圖所示只有②③成立.
故可能成立的有兩個.
故選B.
點(diǎn)評:本題考查函數(shù)零點(diǎn)的判定的應(yīng)用和數(shù)形結(jié)合思想的應(yīng)用,數(shù)形結(jié)合的應(yīng)用大致分兩類:一是以形解數(shù),即借助數(shù)的精確性,深刻性來講述形的某些屬性;二是以形輔數(shù),即借助與形的直觀性,形象性來揭示數(shù)之間的某種關(guān)系,用形作為探究解題途徑,獲得問題結(jié)果的重要工具.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案