已知甲盒內(nèi)有大小相同的1個紅球和3個黑球, 乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(1)求取出的4個球均為黑球的概率;
(2)求取出的4個球中恰有1個紅球的概率;
(3)設為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學期望
(1);(2);(3)分布列(略),.
解析試題分析:(1)4個球均為黑球,即從甲、乙中取出的2個球均為黑球,由于甲、乙相互獨立,因此概率為甲中取出黑球的概率與乙中取出黑球概率的乘積;(2)取出4球中恰有1個紅球,分兩類計算:一類紅球來至于甲,二類紅球來至于乙;(3)紅球個數(shù)可能取值為0,1,2,3,注意分別對應概率的計算.
試題解析:
(1)設“從甲盒內(nèi)取出的2個球均為黑球”為事件,
“從乙盒內(nèi)取出的2個球均為黑球”為事件.
由于事件相互獨立,且,. 2分
故取出的4個球均為黑球的概率為. 4分
(2) 設“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件.則
,. 6分
由于事件互斥,故取出的4個球中恰有1個紅球的概率為
. 8分
(3)可能的取值為.
由(1),(2)得,, .
從而.
的分布列為 0 1 2 3
的數(shù)學期望. 12分
考點:組合與概率綜合應用.
科目:高中數(shù)學 來源: 題型:解答題
袋中裝著分別標有數(shù)字1,2,3,4,5的5個形狀相同的小球.
(1)從袋中任取2個小球,求兩個小球所標數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個小球,記第一次取出的小球所標數(shù)字為x,第二次為y,求點滿足的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù), (1) 求的最小值;(2)求恒成立的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;(2)朝上的一面數(shù)之和小于5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個布袋里有3個紅球,2個白球共5個球. 現(xiàn)抽取3次,每次任意抽取2個,并待放回后再抽下一次.求:
(1)3次抽取中,每次取出的2個球都是1個白球和1個紅球的概率;
(2)3次抽取中,有2次取出的2個球是1個白球和1個紅球,還有1次取出的2個球同色的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為6的概率;
(2)兩數(shù)之積是6的倍數(shù)的概率;
(3)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=15的內(nèi)部的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某中學在運動會期間舉行定點投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設每次投籃投中與否是相互獨立的,已知小明每次投籃投中的概率都是.
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).學科網(wǎng)設每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設每盤游戲獲得的分數(shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析分數(shù)減少的原因.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com