在研究色盲與性別的關系調查中,調查了男性480人,其中有38人患色盲,調查的520名女性中有6人患色盲.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;

 
患色盲
不患色盲
總計

 
442
 

6
 
 
總計
44
956
1000
(2)若認為“性別與患色盲有關系”,則出錯的概率會是多少?
隨機變量
附臨界值參考表:
P(K2x0)
0.10
0.05
0.025
0.10
0.005
0.001
x0
2.706
3.841
5.024
6.635
7.879
10.828

(1)

 
患色盲
不患色盲
總計

38
442
480

6
514
520
總計
44
956
1 000
(2)“性別與患色盲有關系”,則出錯的概率為0.1%

解析試題分析:(1)

 
患色盲
不患色盲
總計

38
442
480

6
514
520
總計
44
956
1 000
(2)假設H0:“性別與患色盲沒有關系”,根據(jù)(1)中2×2列聯(lián)表中數(shù)據(jù),可求得
K2≈27.14,       8分
P(K2≥10.828)=0.001,即H0成立的概率不超過0.001,       11分
故若認為“性別與患色盲有關系”,則出錯的概率為0.1%.      12分
考點:獨立性檢驗
點評:解決的關鍵是利用反證法思想來得到判錯率,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題


在對某校高一學生體育選修項目的一次調查中,共調查了160人,其中女生85人,男生75人.女生中有60人選修排球,其余的人選修籃球;男生中有20人選修排球,其余的人選修籃球.(每人必須選一項,且只能選一項)
根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
能否在犯錯誤的概率不超過0.001的前提下認為性別與體育選修項目有關?
參考公式及數(shù)據(jù):,其中.

K2≥k0
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市為節(jié)約用水,計劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標準,通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:

分組
頻數(shù)
頻率
[0,1)
10
0.10
[1,2)

0.20
[2,3)
30
0.30
[3,4)
20
 
[4,5)
10
0.10
[5,6]
10
0.10
合計
100
1.00

(1)求右表中的值;
(2)請將頻率分布直方圖補充完整,并根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在調查男女乘客是否暈機的情況中,已知男乘客暈機為28人,不會暈機的也是28人,而女乘客暈機為28人,不會暈機的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.05的前提下認為暈機與性別有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

延遲退休年齡的問題,近期引發(fā)社會的關注.人社部于2012年7月25日上午召開新聞發(fā)布會表示,我國延遲退休年齡將借鑒國外經(jīng)驗,擬對不同群體采取差別措施,并以“小步慢走”的方式實施.推遲退休年齡似乎是一種必然趨勢,然而反對的聲音也隨之而起.現(xiàn)對某市工薪階層關于“延遲退休年齡”的態(tài)度進行調查,隨機抽取了50人,他們月收入的頻數(shù)分布及對“延遲退休年齡”反對的人數(shù)

月收入(元)
[1000,2000)
[2000,3000)
[3000,4000)
[4000,5000)
[5000,6000)
[6000,7000)
頻數(shù)
5
10
15
10
5
5
反對人數(shù)
4
8
12
5
2
1
(1)由以上統(tǒng)計數(shù)據(jù)估算月收入高于4000的調查對象中,持反對態(tài)度的概率;
(2)若對月收入在[1000,2000),[4000,5000)的被調查對象中各隨機選取兩人進行跟蹤調查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


在關于人體脂肪含量(百分比)和年齡關系的研究中,得到如下一組數(shù)據(jù)

年齡
23
27
39
41
45
50
脂肪含量
9.5
17.8
21.2
25.9
27.5
28.2
(Ⅰ)畫出散點圖,判斷是否具有相關關系;

(Ⅱ)通過計算可知,
請寫出的回歸直線方程,并計算出歲和歲的殘差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某電視臺舉辦了“中華好聲音”大型歌手選秀活動,過程分為初賽、復賽和決賽,經(jīng)初賽進入復賽的40名選手被平均分成甲、乙兩個班,由組委會聘請兩位導師各負責一個班進行聲樂培訓。下面是根據(jù)這40名選手參加復賽時獲得的100名大眾評審的支持票數(shù)制成的莖葉圖:

賽制規(guī)定:參加復賽的40名選手中,獲得的支持票數(shù)排在前5名的選手可進入決賽,若第5名出現(xiàn)并列,則一起進入決賽;另外,票數(shù)不低于95票的選手在決賽時擁有“優(yōu)先挑戰(zhàn)權”。
1、從進入決賽的選手中隨機抽出3名,求其中恰有1名擁有“優(yōu)先挑戰(zhàn)權”的概率;
2、電視臺決定,復賽票數(shù)不低于85票的選手將成為電視臺的“簽約歌手”,請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成為‘簽約歌手’與選擇的導師有關?

 
甲班
乙班
合計
簽約歌手
 
 
 
末簽約歌手
 
 
 
合計
 
 
 
下面臨界值表僅供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
參考公式:K2= ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)PM2.5是指懸浮在空氣中的空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標準GB3095 – 2012,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米 ~ 75毫克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標。從某自然保護區(qū)2012年全年每天的PM2.5監(jiān)測值數(shù)據(jù)中隨機地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表所示:

PM2.5日均值
(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
頻數(shù)
3
1
1
1
1
3
(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機抽取3天,求恰有1天空氣質量達到一級的概率;(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標的天數(shù),求ξ的分布列;(3)以這10天的PM2.5日均值來估計一年的空氣質量狀況,則一年(按366天算)中平均有多少天的空氣質量達到一級或二級。(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題10分) 為了解高二學年女生身高情況,對高二(10)班女生身高進行了一次測量,所得數(shù)據(jù)整理后列出了頻率分布表如下:

組 別
 
頻數(shù)
 
頻率
 
145.5~149.5
 
1
 
0.02
 
149.5~153.5
 
4
 
0.08
 
153.5~157.5
 
20
 
0.40
 
157.5~161.5
 
15
 
0.30
 
161.5~165.5
 
8
 
0.16
 
165.5~169.5
 
m
 
n
 
合 計
 
M
 
N
 
(1)求出表中所表示的數(shù)分別是多少?
(2)若該校高二學年共有女生500人,試估計高二女生中身高在161.5以上的人數(shù)。

查看答案和解析>>

同步練習冊答案