18.設(shè)f(x)=max$\left\{{{x^2}-4x+3,\frac{3}{2}x+\frac{1}{2},3-x}\right\}$,其中max{a,b,c}表示三個(gè)數(shù)a,b,c中的最大值,則f(x)的最小值是2.

分析 分別作出y=x2-4x+3,y=$\frac{3}{2}$x+$\frac{1}{2}$,y=3-x的圖象,分別求出最小值,比較即可.

解答 解:分別作出y=x2-4x+3,y=$\frac{3}{2}$x+$\frac{1}{2}$,y=3-x的圖象,
當(dāng)x≤0時(shí),f(x)=x2-4x+3,其最小值為3,
當(dāng)0<x≤1時(shí),f(x)=3-x,其最小值為2,
當(dāng)1≤x≤5時(shí),f(x)=y=$\frac{3}{2}$x+$\frac{1}{2}$,其最小值為2,
當(dāng)x>5時(shí),f(x)=x2-4x+3,其最小值為8,
綜上所述f(x)的最小值是2,
故答案為:2

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,畫(huà)出圖象,通過(guò)圖象觀察和函數(shù)最值是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如圖所示:
等級(jí)不合格合格
得分[20,40)[40,60)[60,80)[80,100]
頻數(shù)6a24b
(Ⅰ)求a,b,c的值;
(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人這任選4人,記所選4人的量化總分為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ);
(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)M(M=$\frac{E(ξ)}{D(ξ)}$,其中D(ξ)表示ξ的方差)來(lái)評(píng)估該校安全教育活動(dòng)的成效.若M≥0.7,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)五校,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對(duì)某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:

(Ⅰ)已知該校有400名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足4小時(shí)的人數(shù);
(Ⅱ)若從學(xué)習(xí)時(shí)間不少于4小時(shí)的學(xué)生中選取4人,設(shè)選到的男生人數(shù)為X,求隨機(jī)變量X的分布列;
(Ⅲ)試比較男生學(xué)習(xí)時(shí)間的方差${S_1}^2$與女生學(xué)習(xí)時(shí)間方差$S_2^2$的大。ㄖ恍鑼(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)$f(x)={e^{{x^2}+2x}}$,設(shè)$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,則有( 。
A.f(a)<f(b)<f(c)B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{5}$+y2=1,點(diǎn)F為橢圓的左焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),點(diǎn)A(5,4),那么|PA|-|PF|的最小值5$-2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={x|x≥4},函數(shù)g(x)=$\sqrt{1-x+a}$的定義域?yàn)锽,若A∩B=∅,則實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.定義集合A,B的一種運(yùn)算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2},B={1,2,3},則A*B中所有元素之和為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,則集合∁U(A∩B)的非空子集共有( 。
A.3個(gè)B.4個(gè)C.7個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(α)=cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$
(Ⅰ)當(dāng)α為第二象限角時(shí),化簡(jiǎn)f(α);
(Ⅱ)當(dāng)α∈($\frac{π}{2}$,π)時(shí),求f(α)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案