4.如圖所示是一個(gè)幾何體的三視圖,則該幾何體的體積為 ( 。
A.$\frac{64}{3}$B.16C.$\frac{32}{3}$D.48

分析 由題意,直觀圖是放倒的四棱錐,棱錐的高為4,底面為主視圖,是梯形,上底2,下底6,高為4,即可得出結(jié)論.

解答 解:由題意,直觀圖是放倒的四棱錐,棱錐的高為4,底面為主視圖,是梯形,上底2,下底6,高為4,面積為$\frac{2+6}{2}×4$=16,
∴四棱錐的體積=$\frac{1}{3}×16×4$=$\frac{64}{3}$,
故選A.

點(diǎn)評 本題考查由三視圖求體積,考查學(xué)生的計(jì)算能力,確定直觀圖的形狀是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{3}{sinx+2}$的值域?yàn)椋ā 。?table class="qanwser">A.(1,3)B.(1,3]C.[1,3)D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以x軸為對稱軸,以原點(diǎn)為頂點(diǎn)且過圓x2+y2-2x+6y+9=0的圓心的拋物線的方程是( 。
A.y=3x2或y=-3x2B.y=3x2C.y2=-9x或y=3x2D.y2=9x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow$=-2,則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)O是原點(diǎn),若|AF|=5,則△AOF的面積為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若全集U=R,函數(shù)y=$\sqrt{x-2}$+$\sqrt{x+1}$的定義域?yàn)锳,函數(shù)y=log2(-2x2+5x+3)的定義域?yàn)锽.
(1)求集合(∁UA)∩(∁UB);
(2)設(shè)函數(shù)g(x)=$\sqrt{-{x}^{2}+(a-1)x+a}$的定義域?yàn)榧螩,若B∩C=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a>$\frac{1}{2}$,b>0,若a+b=2,則$\frac{1}{2a-1}+\frac{2}$的最小值為( 。
A.3+2$\sqrt{2}$B.6C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)的定義域?yàn)镽*,且滿足條件f(4)=1,對于任意${x_1},{x_2}∈{R^*}$,有f(x1•x2)=f(x1)+f(x2),且函數(shù)f(x)在R*上為增函數(shù).
(1)求f(1)的值;
(2)如果f(3x+1)+f(2x-6)≤3,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù) f (x)=|x-1|+|x-a|(a∈R).
(1)若a=-3,求函數(shù) f (x)的最小值;
(2)如果?x∈R,f (x)≤2a+2|x-1|,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案