【題目】已知△ABC的三個頂點的坐標為A(0,1),B(1,0),C(0,﹣2),O為坐標原點,動點M滿足| |=1,則| + + |的最大值是( )
A.
B.
C. ﹣1
D. ﹣1
科目:高中數學 來源: 題型:
【題目】設△AnBnCn的三邊長分別為an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,則∠An的最大值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某重點中學為了解高一年級學生身體發(fā)育情況,對全校700名高一年級學生按性別進行分層抽樣檢查,測得身高(單位:cm)頻數分布表如表1、表2. 表1:男生身高頻數分布表
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
頻數 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生身高頻數分布表
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
頻數 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求該校高一女生的人數;
(2)估計該校學生身高在[165,180)的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級的男生和女生中分別選出1人,設X表示身高在[165,180)學生的人數,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|,若不等式f(x)≤3的解集為{|x|﹣1≤x≤5}. (Ⅰ)求實數a的值:
(Ⅱ)若不等式f(3x)+f(x+3)≥m對一切實數x恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+lnx,其中a為常數,設e為自然對數的底數.
(1)當a=﹣1時,求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為﹣3,求a的值;
(3)設g(x)=xf(x),若a>0,對于任意的兩個正實數x1 , x2(x1≠x2),證明:2g( )<g(x1)+g(x2).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌的汽車4S店,對最近100例分期付款購車情況進行統(tǒng)計,統(tǒng)計結果如表所示,已知分9期付款的頻率為0.4;該店經銷一輛該品牌的汽車.若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數 | 20 | 20 | a | b |
(1)若以表中計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數量較大)中隨機抽取3位顧客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分層抽樣的方式從這100位顧客中抽出5人,再從抽出的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量η,求η的分布列及數學期望E(η).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的程序框圖的算法思路來源于我國古代數學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入a,b的值分別是21,28,則輸出a的值為( )
A.14
B.7
C.1
D.0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}和{bn}中,a1= ,{an}的前n項為Sn , 滿足Sn+1+( )n+1=Sn+( )n(n∈N*),bn=(2n+1)an , {bn}的前n項和為Tn .
(1)求數列{bn}的通項公式bn以及Tn .
(2)若T1+T3 , mT2 , 3(T2+T3)成等差數列,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在(0,+∞)上的函數f(x)滿足f′(x)+2f(x)= ,且f(1)= ,則不等式f(lnx)>f(3)的解集為( )
A.(﹣∞,e3)
B.(0,e3)
C.(1,e3)
D.(e3 , +∞)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com