精英家教網 > 高中數學 > 題目詳情

【題目】下列說法正確的個數是(

①一組數據的標準差越大,則說明這組數據越集中;

②曲線與曲線的焦距相等;

③在頻率分布直方圖中,估計的中位數左邊和右邊的直方圖的面積相等;

④已知橢圓,過點作直線,當直線斜率為時,M剛好是直線被橢圓截得的弦AB的中點.

A.1B.2C.3D.4

【答案】B

【解析】

對每個命題分別進行判斷后可得結論.

標準差或方差反映數據的集中度,標準差越小,數據越集中,①錯;

曲線,,曲線,,焦距相等,②正確;

在頻率分布直方圖中,估計的中位數是頻率為0.5對應的點,在它的兩邊直方圖的頻率(面積)相等,③正確;

橢圓,過點作直線,設直線與橢圓的交點為,但由于橢圓上的點滿足,點在橢圓外,不可能是的中點,④錯誤.

正確命題有2個.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若有極值點,有兩個零點,且恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行節(jié)假日高速公路免費政策某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數,統(tǒng)計發(fā)現(xiàn)這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.例如:1004分,記作時刻64.

1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數據用該組區(qū)間的中點值代表);

2)為了對數據進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設抽到的4輛車中,在9:20~10:00之間通過的車輛數為X,求X的分布列與數學期望;

3)由大數據分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數據用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(結果保留到整數).

參考數據:若,則,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的焦點為,點在拋物線上,.若以為直徑的圓過點,則拋物線的焦點到準線距離為( )

A. 8B. 4或8C. 2D. 2或4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】回收1噸廢紙可以生產出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費用約0.9萬元,回收1噸廢紙的費用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】C反應蛋白(CRP)是機體受到微生物入侵或組織損傷等炎癥性刺激時肝細胞合成的急性相蛋白,醫(yī)學認為CRP值介于0-10mg/L為正常值下面是某患者在治療期間連續(xù)5天的檢驗報告單中CRP值(單位:mg/L)與治療天數的統(tǒng)計數據:

治療天數x

1

2

3

4

5

CRPy

51

40

35

28

21

1)若CRPy與治療天數x具有線性相關關系,試用最小二乘法求出y關于x的線性回歸方程,并估計該患者至少需要治療多少天CRP值可以到正常水平;

2)為均衡城鄉(xiāng)保障待遇,統(tǒng)一保障范圍和支付標準,為參保人員提供公平的基本醫(yī)療保障.某市城鄉(xiāng)醫(yī)療保險實施辦法指出:門診報銷比例為50%:住院報銷比例,A類醫(yī)療機構80%,B類醫(yī)療機構60.若張華參加了城鄉(xiāng)基本醫(yī)療保險,他因CRP偏高選擇在某醫(yī)療機構治療,醫(yī)生為張華提供了三種治療方案:

方案一:門診治療,預計每天診療費80元;

方案二:住院治療,A類醫(yī)療機構,入院檢查需花費600元,預計每天診療費100元;

方案三:住院治療,B類醫(yī)療機構,入院檢查需花費400元,預計每天診療費40元;

若張華需要經過連續(xù)治療n天,,請你為張華選擇最經濟實惠的治療方案.

,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構造三角形函數”.已知函數f(x)=是“可構造三角形函數”,則實數t的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱柱中,平面,,,,點中點.

(Ⅰ)求證:平面平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】黨的十九大報告指出,要以創(chuàng)新理念提升農業(yè)發(fā)展新動力,引領經濟發(fā)展走向更高形態(tài).為進一步推進農村經濟結構調整,某村舉辦水果觀光采摘節(jié),并推出配套鄉(xiāng)村游項目現(xiàn)統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖:

(Ⅰ)若將購買金額不低于元的游客稱為“水果達人”,現(xiàn)用分層抽樣的方法從樣本的“水果達人”中抽取人,求這人中消費金額不低于元的人數;

(Ⅱ)從(Ⅰ)中的人中抽取人作為幸運客戶免費參加山村旅游項目,請列出所有的基本事件,并求人中至少有人購買金額不低于元的概率;

(Ⅲ)為吸引顧客,該村特推出兩種促銷方案,

方案一:每滿元可立減元;

方案二:金額超過元但又不超過元的部分打折,金額超過元但又不超過元的部分打折,金額超過元的部分打折.

若水果的價格為元/千克,某游客要購買千克,應該選擇哪種方案.

查看答案和解析>>

同步練習冊答案