設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是______.
設弦PQ的中點為M,過點P、M、Q分別作準線l的垂線,垂足為P'、M'、Q'
則|MM'|=
1
2
(|PP'|+|QQ'|)=
1
2e
(|PF|+|QF|)=
1
2e
|PQ|
假設存在點R,使△PQR為正三角形,則由|RM|=
3
2
|PQ|,且|MM'|<|RM|
得:
1
2e
|PQ|<
3
2
|PQ|
1
2e
3
2

∴e>
3
3

∴橢圓離心率e的取值范圍是(
3
3
,1)

故答案為:(
3
3
,1)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的準線方程為( 。
A、y=±
a2
c
B、y=±
b2
c
C、x=±
a2
c
D、x=±
b2
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是
(
3
3
,1)
(
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的準線方程為( 。
A.y=±
a2
c
B.y=±
b2
c
C.x=±
a2
c
D.x=±
b2
c

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是______.

查看答案和解析>>

同步練習冊答案