(本小題滿分13分) 已知等差數(shù)列滿足:,的前n項(xiàng)和為
(Ⅰ)求通項(xiàng)公式及前n項(xiàng)和;
(Ⅱ)令=(nN*),求數(shù)列的前n項(xiàng)和

(Ⅰ); =;(Ⅱ)=。

解析試題分析:(1)結(jié)合已知中的等差數(shù)列的項(xiàng)的關(guān)系式,聯(lián)立方程組得到其通項(xiàng)公式和前n項(xiàng)和。
(2)在第一問(wèn)的基礎(chǔ)上,得到bn的通項(xiàng)公式,進(jìn)而分析運(yùn)用裂項(xiàng)法得到。
解:(Ⅰ)設(shè)等差數(shù)列的公差為d,由已知可得,
解得,……………2分,
所以;………4分
==………6分
(Ⅱ)由(Ⅰ)知,
所以===   ……10分
所以== 
即數(shù)列的前n項(xiàng)和=   ……13分
考點(diǎn):本試題主要考查了等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的求解運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能得到等差數(shù)列的通項(xiàng)公式,然后求解新數(shù)列的通項(xiàng)公式,利用裂項(xiàng)的思想來(lái)得到求和。易錯(cuò)點(diǎn)就是裂項(xiàng)的準(zhǔn)確表示。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
等差數(shù)列中,前項(xiàng)和為,且
(Ⅰ)求通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為遞減的等差數(shù)列,是數(shù)列的前項(xiàng)和,且.
⑴ 求數(shù)列的前項(xiàng)和
⑵ 令,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
(1)已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.求的通項(xiàng)公式. 
(2)數(shù)列中,,.求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知等差數(shù)列中,前5項(xiàng)和前10項(xiàng)的和分別為25和100。數(shù)列中,。
(1)求、
(2)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
若等差數(shù)列的前項(xiàng)和為,且滿足為常數(shù),則稱該數(shù)列為數(shù)列.
(1)判斷是否為數(shù)列?并說(shuō)明理由;
(2)若首項(xiàng)為且公差不為零的等差數(shù)列數(shù)列,試求出該數(shù)列的通項(xiàng)公式;
(3)若首項(xiàng)為,公差不為零且各項(xiàng)為正數(shù)的等差數(shù)列數(shù)列,正整數(shù)滿足,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分)
在等差數(shù)列中,,.
(1)求數(shù)列的通項(xiàng);
(2)令,證明:數(shù)列為等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列中,,點(diǎn)在直線上.
(I)求數(shù)列的通項(xiàng);
(II) 設(shè),求數(shù)列的前n項(xiàng)和,并求滿足的最大正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和,數(shù)列的前n項(xiàng)和,,
(1)求,的通項(xiàng)公式;
(2)設(shè),是否存在正整數(shù),使得對(duì)恒成立?若存在,求出的值;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案