若A={x|x2+x-a>0},且1∉A,則a的取值范圍為
{a|a≥2}
{a|a≥2}
分析:由1∉A,知集合A中沒有元素1,又集合A中的元素是由一元二次不等式構(gòu)成的解集,故可轉(zhuǎn)化為一元二次不等式?jīng)]有實數(shù)解1,即12+1-a≤0,解得a的范圍.
解答:解:∵1∉A,∴集合A中沒有元素1,
又集合A中的元素是由一元二次不等式構(gòu)成的解集,
故問題可轉(zhuǎn)化為一元二次不等式?jīng)]有實數(shù)解1.
由12+1-a≤0,
解得 a≥2.
故答案為:{a|a≥2}.
點評:本題利用二次函數(shù)考查了集合元素的分布以及集合與集合間的運算問題,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x|x2+x-6=0},B={x|
1m
x+1=0}
,且A∪B=A,則實數(shù)m的值為
{-2,3}
{-2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知φ(x)=
a
x+1
,a
為正常數(shù).(e=2.71828…);
(理科做)(1)若f(x)=lnx+φ(x),且a=
9
2
,求函數(shù)f(x)在區(qū)間[1,e]上的最大值與最小值
(2)若g(x)=|lnx|+φ(x),且對任意x1,x2∈(0,2],x1≠x2都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范圍.
(文科做)(1)當a=2時描繪?(x)的簡圖
(2)若f(x)=?(x)+
1
?(x)
,求函數(shù)f(x)在區(qū)間[1,e]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x|x2-x-6>0},B={x|x2-3x-4<0},則A∩B=
{x|3<x<4}
{x|3<x<4}

查看答案和解析>>

同步練習冊答案