4.已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=1,公差d=2,則a5=( 。
A.6B.9C.25D.31

分析 直接利用等差數(shù)列的通項(xiàng)公式得答案.

解答 解:在等差數(shù)列{an}中,由首項(xiàng)a1=1,公差d=2,
得a5=a1+4d=1+4×2=9.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.橢圓與雙曲線有相同的焦點(diǎn)F1(-c,0),F(xiàn)2(c,0),橢圓的一個(gè)短軸端點(diǎn)為B,直線F1B與雙曲線的一條漸近線平行,若橢圓與雙曲線的離心率分別為e1,e2,則3e12+e22的最小值為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某校高一學(xué)生共有500人,為了了解學(xué)生的歷史學(xué)習(xí)情況,隨機(jī)抽取了50名學(xué)生,對(duì)他們一年來(lái)4次考試的歷史平均成績(jī)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補(bǔ)全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點(diǎn)值(例如區(qū)間[70,80)的中點(diǎn)值是
75作為代表),試估計(jì)該校高一學(xué)生歷史成績(jī)的眾數(shù),中位數(shù)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},(∁UA)∩(∁UB)=(-∞,-1]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時(shí),f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)=x2-4x+3,若f(x)≥mx對(duì)任意的實(shí)數(shù)x≥2都成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-2$\sqrt{3}$-4,-2$\sqrt{3}$+4]B.(-∞,-2$\sqrt{3}$-4]∪[-2$\sqrt{3}$+4,+∞)
C.[-2$\sqrt{3}$+4,+∞)D.(-∞,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+ln(x+1)的定義域?yàn)椋?1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)y=xcosx-sinx的圖象上的點(diǎn)(x0,y0)處的切線的斜率為k,若k=g(x0),則函數(shù)k=g(x0)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集記為D,有下面四個(gè)命題:
p1:?(x,y)∈D,x+2y≥-2
p2:?(x,y)∈D,x+2y≥-2
p3:?(x,y)∈D,x+2y≤3
p4:?(x,y)∈D,x+2y≤-1
其中的真命題是p1,p2.(用命題編號(hào)作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案