【題目】重慶市的新高考模式為“”,其中“3”是指語文、數(shù)學、外語三門必步科目:“1”是指物理、歷史兩門科目必選且只選一門;“2”是指在政治、地理、化學、生物四科中必須任選兩門,這樣學生的選科就可以分為兩類:物理類與歷史類,比如物理類有:物理+化學+生物,物理+化學+地理,物理+化學+政治.物理+政治+地理,物理+政治+生物,物理+生物+地理.重慶某中學高一學生共1200人,其中男生650人,女生550人,為了適應新高考,該校高一的學生在3月份進行了“”的選科,選科情況部分數(shù)據(jù)如下表所示:(單位:人)
性別 | 物理類 | 歷史類 | 合計 |
男生 | 590 | ||
女生 | 240 | ||
合計 | 900 |
(1)請將題中表格補充完整,并判斷能否有99%把握認為“是否選擇物理類與性別有關(guān)”?
(2)已知高一9班和10班選科結(jié)果都只有四種組合:物理+化學+生物,物理+化學+地理,政治+歷史+地理,政治+歷史+生物.現(xiàn)用數(shù)字1,2,3,4依次代表這四種組合,兩個班的選科數(shù)據(jù)如下表所示(單位:人).
理化生 | 理化地 | 政史地 | 政史生 | 班級總?cè)藬?shù) | |
9班 | 18 | 18 | 12 | 12 | 60 |
10班 | 24 | 12 | 18 | 6 | 60 |
現(xiàn)分別從兩個班各選一人,記他們的選科結(jié)果分別為和,令,用頻率代表概率,求隨機變量的分布列和期望.(參考數(shù)據(jù):,,)
附:;
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)表格見解析,有99%把握認為“是否選擇物理類與性別有關(guān);(2)分布列見解析,
【解析】
(1)根據(jù)總?cè)藬?shù)和表格中已有數(shù)據(jù),填寫完成表格,計算出,結(jié)合表格中的已知數(shù)據(jù),做出判斷;(2)先的取值分別為0,1,2,3,再計算出每種取值的概率,列出分布列,計算出期望.
(1)根據(jù)物理類總?cè)藬?shù)900人,其中男生590人,可得女生為310人,
根據(jù)總?cè)藬?shù)1200人,得到歷史類總?cè)藬?shù)300人,其中女生240人,可得男生60人.
完成表格如下:
性別 | 物理類 | 歷史類 | 合計 |
男生 | 590 | 60 | 650 |
女生 | 310 | 240 | 550 |
合計 | 900 | 300 | 1200 |
所以
所以,有99%把握認為“是否選擇物理類與性別有關(guān)“.
(2)的取值分別為0,1,2,3
故的分布列為:
0 | 1 | 2 | 3 | |
0.26 | 0.39 | 0.24 | 0.11 |
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的直角坐標方程,并求時直線的普通方程;
(2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.
(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;
(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.
①求;
②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達式,并由此求出數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若存在兩個不相等的正數(shù),,滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過點,過點的直線與拋物線有兩個不同的交點,且直線交軸于點,直線交軸于點.
(1)求直線的斜率的取值范圍;
(2)設(shè)為原點,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級有男生人,編號為,,…,;女生人,編號為,,…,.為了解學生的學習狀態(tài),按編號采用系統(tǒng)抽樣的方法從這名學生中抽取人進行問卷調(diào)查,第一組抽到的號碼為,現(xiàn)從這名學生中隨機抽取人進行座談,則這人中既有男生又有女生的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為橢圓的左、右焦點,為該橢圓的一條垂直于軸的動弦,直線與軸交于點,直線與直線的交點為.
(1)證明:點恒在橢圓上.
(2)設(shè)直線與橢圓只有一個公共點,直線與直線相交于點,在平面內(nèi)是否存在定點,使得恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com