已知,則       
?1 

試題分析:f′(x)=2x+3f'(1),令x=1,得f′(1)=2+3f'(1),f′(1)=-1。
點(diǎn)評(píng):在求導(dǎo)時(shí),很多同學(xué)不理解的導(dǎo)數(shù)是什么,實(shí)際是是一個(gè)常數(shù),它的導(dǎo)數(shù)為零。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對(duì)定義域內(nèi)任意一個(gè),不等式是否恒成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn)處的切線與直線垂直,則實(shí)數(shù)的值為    (     )
A.2   B.-2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)點(diǎn)P在曲線上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線及直線x=2所圍成的面積分別記為。

(Ⅰ)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)設(shè)函數(shù).
⑴ 求的極值點(diǎn);
⑵ 若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
⑶ 已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一個(gè)交通擁擠及事故易發(fā)生路段,為了確保交通安全,交通部門規(guī)定,在此路段內(nèi)的車速v(單位:km/h)的平方和車身長(zhǎng)(單位:m)的乘積與車距d成正比,且最小車距不得少于半個(gè)車身長(zhǎng).假定車身長(zhǎng)均為(單位:m)且當(dāng)車速為50(km/h)時(shí),車距恰為車身長(zhǎng),問交通繁忙時(shí),應(yīng)規(guī)定怎樣的車速,才能使在此路段的車流量Q最大?(車流量=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程          .

查看答案和解析>>

同步練習(xí)冊(cè)答案