19.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線為某空間幾何體的三視圖,則該幾何體的體積為(  )
A.8B.6C.4D.2

分析 由三視圖可知,兩個這樣的幾何體以俯視圖為底面的四棱錐,求出底面面積和高,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,
其底面面積S=$\frac{1}{2}$×(2+4)×2=6,
高h=2,
故體積V=$\frac{1}{3}$Sh=$\frac{1}{3}$×6×2=4,
故選C.

點評 本題考查的知識點是由三視圖,求體積,其中根據(jù)已知分析出幾何體的形狀是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.冪函數(shù)y=f(x)的圖象經(jīng)過點(-2,-$\frac{1}{8}$),則滿足f(x)=27的x值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的左右焦點分別為F1,F(xiàn)2,P為右支上一點,且|$\overrightarrow{{PF}_{1}}$|=8,$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,則雙曲線的漸近線方程是( 。
A.y=±2$\sqrt{2}$xB.y=±2$\sqrt{6}$xC.y=±5xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若直線l1:ax+2y-1=0與l2:3x-ay+1=0垂直,則a=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知兩定點M(-1,0),N(1,0),直線l:y=-2x+3,在l上滿足|PM|+|PN|=4的點P有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列有關(guān)函數(shù)單調(diào)性的說法,不正確的是(  )
A.若f(x)為增函數(shù),g(x)為增函數(shù),則f(x)+g(x)為增函數(shù)
B.若f(x)為減函數(shù),g(x)為減函數(shù),則f(x)+g(x)為減函數(shù)
C.若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)+g(x)為增函數(shù)
D.若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)-g(x)為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖是正方體的平面展開圖,則在這個正方體中,以下四個判斷中,正確的序號是②④.
①BM與ED平行;②CN與BE是異面直線;③CN與BM成60°角;④DM與BN是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在銳角三角形ABC,角A,B,C的對邊分別為a,b,c,且滿足(b2-a2-c2)sinAcosA=accos(A+C).
(1)求角A;
(2)若a=$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)(2a${\;}^{\frac{3}{2}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$);
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

同步練習冊答案