已知雙曲線,、是雙曲線的左右頂點(diǎn),是雙曲線上除兩頂點(diǎn)外的一點(diǎn),直線與直線的斜率之積是,

求雙曲線的離心率;

若該雙曲線的焦點(diǎn)到漸近線的距離是,求雙曲線的方程.

 

【答案】

(1);(2)

【解析】

試題分析:(1)雙曲線的左右頂點(diǎn)分別為,設(shè)是雙曲線上作一點(diǎn),在直線斜率都存在時(shí),有,這也可為雙曲線的性質(zhì)吧,那本題中就是,,

(2)雙曲線一條漸近線為,即,焦點(diǎn)到漸近線距離為,由(1),可求得,從而得雙曲線方程.

試題解析:(1)設(shè),,則,變形為

,∴,

(2)雙曲線的一條漸近線為,即,焦點(diǎn)為到漸近線的距離為,由(1),∴,因此雙曲線方程為

考點(diǎn):(1)雙曲線的離心率;(2)雙曲線標(biāo)準(zhǔn)方程.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點(diǎn),F1F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;

    (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過M (–2,0)及AB的中點(diǎn),求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)高三考模擬考試數(shù)學(xué)試卷(文科) 題型:填空題

已知拋物線的方程是,雙曲線的右焦點(diǎn)是拋物線的焦點(diǎn),離心率為2,則雙曲

線的標(biāo)準(zhǔn)方程是 ______,其漸近線方程是______________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知F1、F2是雙曲數(shù)學(xué)公式的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

同步練習(xí)冊答案