精英家教網(wǎng)如圖是一個(gè)半徑為3米的水輪,水輪圓心O距離水面2米,已知水輪每分鐘轉(zhuǎn)動(dòng)四圈,水輪上的點(diǎn)P相對(duì)于水面的高度y(米)與時(shí)間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+B(A>0,ω>0,0<φ<2π),若x=0時(shí),P在最高點(diǎn),則函數(shù)表達(dá)式為:
 
分析:先根據(jù)y的最大和最小值求得A和B,利用周期求得ω,當(dāng)x=0時(shí)函數(shù)有最大值,進(jìn)而求得φ的值,則函數(shù)的表達(dá)式可得.
解答:解:依題意可知y的最大值為5,最小為-1
∴有
A+B=5
-A+B=-1
求得B=2,A=3
T=
60
4
=15
∴ω=
15

x=0時(shí),P在最高點(diǎn),∴sinφ=1
∴φ=
π
2

∴函數(shù)的表達(dá)式為y=3sin(
15
x+
π
2
)
+2
故答案為:y=3sin(
15
x+
π
2
)
+2
點(diǎn)評(píng):本題主要考查了在實(shí)際問(wèn)題中建立三角函數(shù)模型的問(wèn)題.考查了運(yùn)用三角函數(shù)的最值,周期等問(wèn)題確定函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,一個(gè)半徑為10米的水輪按逆時(shí)針?lè)较蛎糠昼娹D(zhuǎn)4圈,記水輪上的點(diǎn)P到水面的距離為d米(P在水面下則d為負(fù)數(shù)),則d(米)與時(shí)間t(秒)之間滿足關(guān)系式:d=Asin(ωt+φ)+k(A>0,ω>0),-
π
2
<φ<
π
2
,且當(dāng)P點(diǎn)從水面上浮現(xiàn)時(shí)開(kāi)始計(jì)算時(shí)間,有以下四個(gè)結(jié)論:
(1)A=10;
(2)ω=
15
;
(3)φ=
π
6

(4)K=5,
則其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖是一個(gè)半徑為3米的水輪,水輪圓心O距離水面2米,已知水輪每分鐘轉(zhuǎn)動(dòng)四圈,水輪上的點(diǎn)P相對(duì)于水面的高度y(米)與時(shí)間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+B(A>0,ω>0,0<φ<2π),若x=0時(shí),P在最高點(diǎn),則函數(shù)表達(dá)式為:________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省襄樊四中高考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖,一個(gè)半徑為10米的水輪按逆時(shí)針?lè)较蛎糠昼娹D(zhuǎn)4圈,記水輪上的點(diǎn)P到水面的距離為d米(P在水面下則d為負(fù)數(shù)),則d(米)與時(shí)間t(秒)之間滿足關(guān)系式:d=Asin(ωt+φ)+k(A>0,ω>0),<φ<,且當(dāng)P點(diǎn)從水面上浮現(xiàn)時(shí)開(kāi)始計(jì)算時(shí)間,有以下四個(gè)結(jié)論:
(1)A=10;
(2)ω=
(3)φ=;
(4)K=5,
則其中所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)精品復(fù)習(xí)08:三角函數(shù)的圖象、性質(zhì)(解析版) 題型:解答題

如圖是一個(gè)半徑為3米的水輪,水輪圓心O距離水面2米,已知水輪每分鐘轉(zhuǎn)動(dòng)四圈,水輪上的點(diǎn)P相對(duì)于水面的高度y(米)與時(shí)間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+B(A>0,ω>0,0<φ<2π),若x=0時(shí),P在最高點(diǎn),則函數(shù)表達(dá)式為:   

查看答案和解析>>

同步練習(xí)冊(cè)答案