11.若a>0,b>0,a+b=$\frac{1}{a}$+$\frac{1}$,則3a+81b的最小值為( 。
A.6B.9C.18D.24

分析 a>0,b>0,a+b=$\frac{1}{a}$+$\frac{1}$,化為ab(a+b)=a+b>0,可得ab=1.再利用基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,a+b=$\frac{1}{a}$+$\frac{1}$,∴ab(a+b)=a+b>0,∴ab=1.
則3a+81b≥2$\sqrt{{3}^{a}•{3}^{4b}}$=2$\sqrt{{3}^{a+4b}}$≥2$\sqrt{{3}^{2\sqrt{a•4b}}}$=18,當(dāng)且僅當(dāng)a=4b=2時(shí)取等號(hào).
∴3a+81b的最小值為18.
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的運(yùn)算法則、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是2015年日喀則市舉辦青少年運(yùn)動(dòng)會(huì)上,7位裁判為某武術(shù)隊(duì)員打出的分?jǐn)?shù)的莖葉圖,左邊數(shù)字表示十位數(shù)字,右邊數(shù)字表示個(gè)位數(shù)字.這些數(shù)據(jù)的中位數(shù)是______,去掉一個(gè)最低分和最高分后所剩數(shù)據(jù)的平均數(shù)是(  )
A.86.5; 86.7B.88; 86.7C.88;86.8D.86.5;86.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=loga(3-ax).
(1)當(dāng)x∈[0,2]時(shí),函數(shù)f(x)恒有意義,求實(shí)數(shù)a的取值范圍.
(2)若函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),且最大值為2,求出實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$滿足$\overline z•i=3+4i$,則復(fù)數(shù)z的虛部是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)$\frac{5i}{{2+{i^9}}}$的共軛復(fù)數(shù)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.由區(qū)域$\left\{\begin{array}{l}{y≤2x}\\{x+2y-4≥0}\\{x+y-4≤0}\end{array}\right.$中的點(diǎn)在直線ax+by+c=0(a,b,c∈R)上的投影構(gòu)成的線段記為AB,則|AB|的最小值為$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=2+i,若復(fù)數(shù)$z+\frac{1}{z}$的虛部為b,則b等于( 。
A.$\frac{4}{5}$B.$\frac{4}{5}i$C.$\frac{6}{5}$D.$\frac{6}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.平面直角坐標(biāo)系中,已知O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(1,1)、(-3,3).若動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,其中λ、μ∈R,且λ+μ=1,則點(diǎn)P的軌跡方程為(  )
A.x-y=0B.x+y=0C.x+2y-3=0D.(x+1)2+(y-2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“已知直角三角形兩直角邊長(zhǎng)分別為5步和12步,問其內(nèi)接正方形邊長(zhǎng)為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)接正方形內(nèi)的概率是( 。
A.$\frac{60}{289}$B.$\frac{90}{289}$C.$\frac{120}{289}$D.$\frac{240}{289}$

查看答案和解析>>

同步練習(xí)冊(cè)答案