7.已知集合M={x|x2-x>0},N={x|x≥1},則M∩N=( 。
A.{x|x≥1}B.{x|x>1}C.D.{x|x>1或x<0}

分析 根據(jù)集合的基本運算進行求解即可.

解答 解:M={x|x2-x>0}={x|x>1或x<0},N={x|x≥1},
則M∩N={x|x>1},
故選:B.

點評 本題主要考查集合的基本運算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.在直角坐標系xOy中,設傾斜角為α的直線:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$,(t為參數(shù))與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))相交于不同的兩點A,B.以O為極點,Ox正半軸為極軸,兩坐標系取相同的單位長度,建立極坐標系.
(1)求曲線C的極坐標方程;
(2)若α=$\frac{π}{3}$,求線段|AB|的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|-3<x<1},B={x|x2-2x≤0},則A∩B=( 。
A.{x|0<x<1}B.{x|0≤x<1}C.{x|-1<x≤1}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若a=3cos30°,b=log${\;}_{\frac{1}{3}}$sin30°,c=log2tan30°,則(  )
A.a>b>cB.b<c<aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設$\overrightarrow a$=(1-cosα,$\sqrt{3}}$),$\overrightarrow b$=(sinα,3)且$\overrightarrow a$∥$\overrightarrow b$,則銳角α為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.數(shù)列{an}的前n項和為Sn,若an=$\frac{2}{{n({n+1})}}$,則S100等于( 。
A.$\frac{100}{101}$B.$\frac{200}{101}$C.2D.$\frac{198}{101}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知f(x)=ax2-lnx,設曲線y=f(x)在x=t(0<t<2)處的切線為l.
(1)試討論函數(shù)f(x)的單調性;
(2)當a=-$\frac{1}{8}$時,證明:當x∈(0,2)時,曲線y=f(x)與l有且僅有一個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=2sinθ.
(1)求直線l的普通方程與曲線C的直角坐標方程;
(2)若直線l與y軸的交點為P,直線l與曲線C的交點為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在(x+2)4的展開式中,x2的系數(shù)為(  )
A.24B.12C.6D.4

查看答案和解析>>

同步練習冊答案