已知函數(shù),曲線在點(diǎn)處切線方程為.

(1)求的值;

(2)討論的單調(diào)性,并求的極大值.

 

【答案】

(1);(2)單調(diào)遞增,在單調(diào)遞減,極大值為.

【解析】

試題分析:本題考查導(dǎo)數(shù)的運(yùn)算以及利用導(dǎo)數(shù)研究曲線的切線方程、函數(shù)的單調(diào)性和極值等數(shù)學(xué)知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)和方法分析問(wèn)題解決問(wèn)題的能力.第一問(wèn),對(duì)求導(dǎo),利用已知列出斜率和切點(diǎn)縱坐標(biāo)的方程,解出的值;第二問(wèn),利用第一問(wèn)的的值,寫出解析式,對(duì)它求導(dǎo),令解出單調(diào)增區(qū)間,令,解出單調(diào)減區(qū)間,通過(guò)單調(diào)區(qū)間判斷在處取得極大值,將代入到中求出極大值.

試題解析: (Ⅰ),由已知得,故

從而.

(II) 由(I)知, 

  

得,,

從而當(dāng)時(shí),;當(dāng)時(shí),.

,單調(diào)遞增,在單調(diào)遞減.

當(dāng)時(shí),函數(shù)取得極大值,極大值為.

考點(diǎn):1.利用導(dǎo)數(shù)求曲線的切線;2.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;3.利用導(dǎo)數(shù)求函數(shù)的極值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆遼寧朝陽(yáng)高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年內(nèi)蒙古巴彥淖爾市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線方程為。

(Ⅰ)求、的值;

(Ⅱ)證明:當(dāng),且時(shí),.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆甘肅省高二4月月考(期中)數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)已知函數(shù),曲線在點(diǎn)處的切線為時(shí),有極值.

(1)求的值;

(2)求上的最大值和最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案