已知函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
π
3
π
4
]
上的最小值是-2,則ω的最小值是
 
分析:先根據(jù)函數(shù)在區(qū)間[-
π
3
,
π
4
]
上的最小值是-2確定ωx的取值范圍,進而可得到-
ωπ
3
≤-
π
2
ωπ
4
2
,求出ω的范圍得到答案.
解答:解:函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
π
3
,
π
4
]
上的最小值是-2,
則ωx的取值范圍是[-
ωπ
3
,
ωπ
4
]
,
-
ωπ
3
≤-
π
2
ωπ
4
2
,
∴ω
3
2
或ω≥6
∴ω的最小值等于
3
2

故答案為:
3
2
點評:本題主要考查正弦函數(shù)的最值的應(yīng)用.考查基礎(chǔ)知識的運用能力.三角函數(shù)式高考的重要考點,一定要強化復(fù)習(xí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案