解不等式

 

答案:
解析:

解:原不等式可化為    ①

當(dāng)0 < aa < 1時,

不等式 ①  x4-2x2 + aa2 < 0      ②

由于0 < aa < 1,=4-4aa2 > 0 ,

不等式 ②  

 ,

或 

∴ 原不等式的解集是:

當(dāng)aa > 1時,不等式 ①  x4-2x2 + aa2 > 0.

由于aa > 1,=4-4aa2 < 0 ,x4-2x2 + aa2 > 0恒成立.

∴ 原不等式的解集是 (-∞,+∞).

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
(1)
x-42x+5
≤1
;
(2)|2x+1|+|x-2|>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
1
x2-2
1
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在非零實(shí)數(shù)集上的函數(shù)f(x)對任意非零實(shí)數(shù)x,y恒有f(xy)=f(x)+f(y),當(dāng)x∈(0,+∞)時,f(x)為增函數(shù),
且f(2)=1.
(1)求f(1),f(-1)的值,并求證:f(x)為偶函數(shù);
(2)判斷并證明f(x)在(-∞,0)的單調(diào)性;
(3)解不等式:f(x)-f(x-2)>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(
x
)
=
1
x
+2
x

(1)求f(x)的表達(dá)式.
(2)設(shè)函數(shù)g(x)=aχ-
1
x2
+f(x),則是否存在實(shí)數(shù)a,使得g(x)為奇函數(shù)?說明理由;
(3)解不等式f(x)-χ>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-3|.
(Ⅰ)解不等式f(x)≤6;
(Ⅱ)若關(guān)于x的不等式f(x)<|1-2a|有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案