5.在平行四邊形ABCD中,AB=2,AD=4,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=( 。
A.8B.12C.-12D.-8

分析 根據(jù)向量的幾何意義和向量的數(shù)量積計(jì)算即可.

解答 解:∵AB=2,AD=4,
則$\overrightarrow{AC}$•$\overrightarrow{BD}$=($\overrightarrow{AB}$+$\overrightarrow{BC}$)($\overrightarrow{AD}$-$\overrightarrow{AB}$)=($\overrightarrow{AB}$+$\overrightarrow{AD}$)($\overrightarrow{AD}$-$\overrightarrow{AB}$)=${\overrightarrow{AD}}^{2}-{\overrightarrow{AB}}^{2}$=16-4=12,
故選:B

點(diǎn)評 本題考查了向量的幾何意義和向量的數(shù)量積屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于函數(shù)$y=sin(x+\frac{π}{8})cos(x+\frac{π}{8})$,以下四個(gè)結(jié)論中錯(cuò)誤的是( 。
A.最小正周期為π
B.圖象可由$y=\frac{1}{2}sinx$先把圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),再把所得圖象向左平移$\frac{π}{8}$個(gè)單位長度而得到
C.圖象關(guān)于直線x=$\frac{5π}{8}$對稱
D.圖象關(guān)于點(diǎn)($\frac{π}{8}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=3$,求$\frac{{x+{x^{-1}}+3}}{{{x^2}+{x^{-2}}-2}}$=$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,bcosC=(2a-c)cosB.
(1)求B;
(2)若b=$\sqrt{7}$,且a+c=4,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.根據(jù)如下樣本數(shù)據(jù):
x234567
y3.42.5-0.20.5-2.0-3.0
得到的回歸方程為$\hat y=bx+a$,則( 。
A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(4,3),則$\overrightarrow{a}$在$\overrightarrow$上的投影為$\frac{24}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.2名廚師和3位服務(wù)員共5人站成一排合影,若廚師不站兩邊,則不同排法的種數(shù)是( 。
A.60B.48C.42D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{3an}是首項(xiàng)為1公比為3的等比數(shù)列,則數(shù)列{$\frac{1}{{{a_{n+1}}{a_{n+3}}}}$}的前n項(xiàng)和Sn=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.方程x2-4|x|+1=0的所有根的平方和為28.

查看答案和解析>>

同步練習(xí)冊答案