7.若向量$\overrightarrow a$,$\overrightarrow b$滿足:$|{\overrightarrow a}|=1$,$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow a$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則$\overrightarrow a$,$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

分析 利用兩組訓(xùn)練的數(shù)量積為0,轉(zhuǎn)化求解向量的夾角即可.

解答 解:由條件得:$\left\{\begin{array}{l}({\overrightarrow a+\overrightarrow b})•\overrightarrow a=0\\({2\overrightarrow a+\overrightarrow b})•\overrightarrow b=0\end{array}\right.$,
∴$\left\{\begin{array}{l}\overrightarrow a•\overrightarrow b=-1\\|{\overrightarrow b}|=\sqrt{2}\end{array}\right.⇒cos({\overrightarrow a,\overrightarrow b})=\frac{-1}{{\sqrt{2}}}$,故$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{3π}{4}$,
故選:D.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=$\overrightarrow$2+m2,則實(shí)數(shù)m等于( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax3+$\frac{1}{2}$x2,在x=-1處取得極大值,記g(x)=$\frac{1}{f′(x)}$,程序框圖如圖所示,若輸出的結(jié)果$S>\frac{2016}{2017}$,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤2016?B.n≤2017?C.n>2016?D.n>2017?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,$B=\frac{π}{3}$,a=2.
(Ⅰ)若$A=\frac{π}{4}$,求c;
(Ⅱ)若△ABC的面積為$\frac{3\sqrt{3}}{2}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\frac{\sqrt{x}}{ln(2-x)}$的定義域?yàn)閇0,1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了了解培訓(xùn)講座對(duì)某工廠工人生產(chǎn)時(shí)間(生產(chǎn)一個(gè)零件所用的時(shí)間,單位:分鐘)的影響.從工廠隨機(jī)選取了200名工人,再將這200名工人隨機(jī)的分成A,B兩組,每組100人.A組參加培訓(xùn)講座,B組不參加.培訓(xùn)講座結(jié)束后A,B兩組中各工人的生產(chǎn)時(shí)間的調(diào)查結(jié)果分別為表1和表2.
                                                                                   表1:
生產(chǎn)時(shí)間[60,65)[65,70)[70,75)[75,80)
人數(shù)30402010
表2
生產(chǎn)時(shí)間[60,65)[65,70)[70,75)[75,80)[80,85)
人數(shù)1025203015
(1)甲、乙兩名工人是隨機(jī)抽取到的200名工人中的兩人,求甲、乙分在不同組的概率;
(2)完成圖3的頻率分布直方圖,比較兩組的生產(chǎn)時(shí)間的中位數(shù)的大小和兩組工人中個(gè)體間的差異程度的大;(不用計(jì)算,可通過直方圖直接回答結(jié)論)

(3)完成下面2×2列聯(lián)表,并回答能否有99.9%的把握認(rèn)為“工人的生產(chǎn)時(shí)間”與參加培訓(xùn)講座有關(guān)?
生產(chǎn)時(shí)間小于70分鐘生產(chǎn)時(shí)間不小于70分鐘合計(jì)
A組工人a=b=
B組工人c=d=
合計(jì)n=
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.010.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.小張以10元一股的價(jià)格購買了一支股票,他將股票當(dāng)天的最高價(jià)格y(元)與第t個(gè)交易日(其中0≤t≤24)進(jìn)行了記錄,得到有關(guān)數(shù)據(jù)如表(不考慮股票交易漲跌停規(guī)律):
t03691215182124
y/元10.013.09.97.010.013.010.017.010.0
他經(jīng)過研究后認(rèn)為單支股票當(dāng)天的最高價(jià)格y(元)是第t個(gè)交易日的函數(shù)y=f(t),并且認(rèn)為y=f(t)的曲線可近似地看作函數(shù)f(t)=Asinωt+b的圖象,請根據(jù)小張的觀點(diǎn)解決下列問題.
(1)試根據(jù)以上數(shù)據(jù),求出函數(shù)f(t)=Asinωt+b的振幅、最小正周期和表達(dá)式;
(2)小張認(rèn)為當(dāng)股票價(jià)格不低于11.5元時(shí)拋售股票比較合理,請問在股票最高價(jià)格波動(dòng)的一個(gè)周期內(nèi)小張有幾天可以拋售股票?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=({-2,m}),\overrightarrow b=({3,n})$,若向量$({2\overrightarrow a-\overrightarrow b})$與$\overrightarrow a$共線,且m+n=1,則,$\overrightarrow a•\overrightarrow b$=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若f(x)=x3-ax2+1在(1,3)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的范圍是( 。
A.[$\frac{9}{2}$,+∞)B.(-∞,3]C.(3,$\frac{9}{2}$)D.(0,3)

查看答案和解析>>

同步練習(xí)冊答案