已知復(fù)數(shù)z=(m2+m-2)+(m2-2m)i
(1)實(shí)數(shù)m取什么值時(shí),z是實(shí)數(shù);
(2)實(shí)數(shù)m取什么值時(shí),與z對(duì)應(yīng)的點(diǎn)在第四象限.
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義,復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)利用復(fù)數(shù)的虛部為0,求出實(shí)數(shù)m值,可得z是實(shí)數(shù);
(2)利用復(fù)數(shù)的虛部小于0,實(shí)部大于0,實(shí)數(shù)m的值,與z對(duì)應(yīng)的點(diǎn)在第四象限.
解答: 解:(1)由題意,得
m2-2m=0     解得m=0或m=2  …(5分)
∴當(dāng)m=0或m=2時(shí),z是實(shí)數(shù).…(6分)
(2)由題意,得
m2+m-2>0
m2-2m<0
解得1<m<2  …(11分)
∴當(dāng)1<m<2時(shí),與z對(duì)應(yīng)的點(diǎn)在第四象限.…(12分)
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本概念,復(fù)數(shù)的幾何意義,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+1,關(guān)于這個(gè)函數(shù)給出以下四個(gè)命題
①函數(shù)f(x)是奇函數(shù);
②x=0是函數(shù)f(x)的極值點(diǎn);
③y=1是曲線y=f(x)的一條切線;
④存在a,b∈R,使得x∈[a,b]時(shí),f(x)∈[a+1,b+1]
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,側(cè)棱CC1=2,∠BAC=90°,AB=AC=
2
,M是棱BC的中點(diǎn),N是CC1中點(diǎn),求
(1)二面角B1-AN-M的大小;
(2)C1到平面AMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4x3-3x2cosθ+
3
16
cosθ其中x∈R,θ為參數(shù),且0≤θ≤2π.
(1)當(dāng)cosθ=0時(shí),判斷函數(shù)f(x)是否有極值;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍;
(3)若對(duì)(2)中所求的取值范圍內(nèi)的任意參數(shù)θ,函數(shù)f(x)在區(qū)間(2a-1,a)(其中a<1)內(nèi)都是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}和{bn}滿足a1=b1=6,a2=b2=4,a3=b3=3,且數(shù)列{an+1-an}是等差數(shù)列,{bn-2}是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{nbn}的前n項(xiàng)和為Sn,求Sn的表達(dá)式;
(3)數(shù)列{cn}滿足cn=an•(bn+2-2),求數(shù)列{cn}的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7個(gè)排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭;
(2)甲不排頭,也不排尾;
(3)甲、乙、丙三人必須在一起;
(4)甲、乙、丙三人互不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx-
3
sin(π-x).
(1)求函數(shù)f(x)的最小正周期和值域;
(2)若α是第二象限角,且f(α-
π
3
)=-
2
3
,試求
cos2α
1+cos2α-sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2x-1
2x+1
(x∈R).
(1)判斷并證明函數(shù)f(x)的單調(diào)性;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若不等式f(1-m)+f(1-m2)<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線C1:x2=my(m>0)的準(zhǔn)線與y軸交于F1,焦點(diǎn)為F2,若橢圓C2以F1、F2為焦點(diǎn),且離心率為e=
1
2

(1)當(dāng)m=4時(shí),求橢圓C2的方程;
(2)若拋物線C1與直線l:y=2x-m及y軸所圍成的圖形的面積為
10
3
,求拋物線C1和直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案