1.直線$x-\sqrt{3}y-2=0$的傾斜角為$\frac{π}{6}$.

分析 設(shè)直線$x-\sqrt{3}y-2=0$的傾斜角為α,則tanα=$\frac{\sqrt{3}}{3}$,α∈[0,π),即可得出.

解答 解:設(shè)直線$x-\sqrt{3}y-2=0$的傾斜角為α,
則tanα=$\frac{\sqrt{3}}{3}$,α∈[0,π),
∴α=$\frac{π}{6}$.
故答案為$\frac{π}{6}$.

點(diǎn)評 本題考查了直線的傾斜角與斜率的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若A=30°,a=1,則$\frac{b+c}{sinB+sinC}$等于( 。
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC三內(nèi)角A、B、C的對邊分別為a、b、c,且acosC+$\sqrt{3}$csinA-b-c=0,
(1)求角A的值;
(2)求函數(shù)f(x)=cos2x+4sinAsinx在區(qū)間$[\frac{2π}{7},\frac{3π}{4}]$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.袋中有8只球,編號分別為1,2,3,4,5,6,7,8,現(xiàn)從中任取3只球,以ξ表示取出的3只球中最大號碼與最小號碼的差,則E(ξ)=(  )
A.4B.4.5C.5D.5.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙、丙三人投籃的水平都比較穩(wěn)定,若三人各自獨(dú)立地進(jìn)行一次投籃測試,則甲投中而乙不投中的概率為$\frac{1}{4}$,乙投中而丙不投中的概率為$\frac{1}{12}$,甲、丙兩人都投中的概率為$\frac{2}{9}$.
(1)分別求甲、乙、丙三人各自投籃一次投中的概率;
(2)若丙連續(xù)投籃5次,求恰有2次投中的概率;
(3)若丙連續(xù)投籃3次,每次投籃,投中得2分,未投中得0分,在3次投籃中,若有2次連續(xù)投中,而另外1次未投中,則額外加1分;若3次全投中,則額外加3分,記ξ為丙連續(xù)投籃3次后的總得分,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是邊SB的中點(diǎn).
(1)求證:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{k{x}^{2}}{{e}^{x}}$(k>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=1時,若存在x>0,使lnf(x)>ax成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級抽取了30名男生和20名女生的該學(xué)科成績,得到如圖所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

(Ⅰ)(i)請根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分非優(yōu)分總計
男生
女生
總計50
(ii)據(jù)列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認(rèn)為“學(xué)科成績與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高二年級該學(xué)科成績中任意抽取3名學(xué)生的成績,求成績?yōu)閮?yōu)分人數(shù)X的分布列與數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=f(x)是奇函數(shù),且當(dāng)x≥0時,f(x)=log2(x+1).若函數(shù)y=g(x)是y=f(x)的反函數(shù),則g(-3)=-7.

查看答案和解析>>

同步練習(xí)冊答案