分析 在△ACD中使用余弦定理得出AC及∠ACD,在△ABC中使用余弦定理得出AB及∠CAE,再在△ACE中使用余弦定理得出CE及∠AEC.
解答 解:連接AC,CE,在△ACD中由余弦定理,得
$A{C^2}={(600\sqrt{3})^2}+{1200^2}-2•600\sqrt{3}•1200•\frac{{\sqrt{3}}}{2}=360000$,
∴AC=600,
則CD2=AD2+AC2,即△ACD是直角三角形,且∠ACD=60°,
又∠BCD=113°,則∠ACB=53°,
∵tan37°=$\frac{3}{4}$,
∴cos53°=sin37°=$\frac{3}{5}$.
在△ABC中,由余弦定理,得:$A{B^2}={600^2}+{500^2}-2•600•500•\frac{3}{5}={500^2}$,則AB=500,
又BC=500,則△ABC是等腰三角形,且∠BAC=53°,
由已知有$AE=600•\frac{36}{60}=360$,
在△ACE中,由余弦定理,有$CE=\sqrt{{{360}^2}+{{600}^2}-2•360•600•\frac{3}{5}}=480$,
又AC2=AE2+CE2,則∠AEC=90°.
由飛機(jī)出發(fā)時(shí)的方位角為600,則飛機(jī)由E地改飛C地的方位角為:90°+60°=150°.
答:收到命令時(shí)飛機(jī)應(yīng)該沿方位角150°的航向飛行,E地離C地480km.
點(diǎn)評(píng) 本題考查了余弦定理,解三角形的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $-\frac{1}{6}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com