14.二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),它們之間的距離為6,二次函數(shù)圖象的對稱軸方程為x=2,且f(x)有最小值為-9,求a,b,c的值.

分析 根據(jù)已知構(gòu)造關(guān)于a,b,c的方程組,解得答案.

解答 解:∵二次函數(shù)f(x)=ax2+bx+c圖象的對稱軸方程為x=2,且f(x)有最小值為-9,
且函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),它們之間的距離為6,
∴$\left\{\begin{array}{l}a>0\\-\frac{2a}=2\\ \frac{4ac-^{2}}{4a}=-9\\ \frac{\sqrt{^{2}-4ac}}{a}=6\end{array}\right.$,
解得:$\left\{\begin{array}{l}a=1\\ b=-4\\ c=-5\end{array}\right.$

點(diǎn)評 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)實(shí)數(shù)a,b滿足0≤a,b≤8,且b2=16+a2,則b-a的最大值與最小值之和為12-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.今年我校高中部在全市初三學(xué)生中進(jìn)行自主招生試點(diǎn),通過面試招錄35名優(yōu)秀初三畢業(yè)生,第一輪面試共有從易到難的A、B、C、D四個(gè)問題,規(guī)則如下:
(1)每位參加者都必須按問題A、B、C、D順序作答,直至答題結(jié)束;
(2)每位參加者計(jì)分器的初始分?jǐn)?shù)都是100分,答對問題A加10分,答對問題B加20分,答對問題C加30分,答對問題D加60分,答錯(cuò)任意一題減20分;
(3)每回答一題,計(jì)分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于80分時(shí),答題結(jié)束,直接淘汰出局;
(4)當(dāng)累計(jì)分?jǐn)?shù)大于或等于140分時(shí),答題結(jié)束,直接進(jìn)入下一輪;
(5)當(dāng)答完四題,累計(jì)分?jǐn)?shù)仍不足140分時(shí),答題結(jié)束,淘汰出局.
現(xiàn)有某學(xué)生甲對問題A、B、C、D答對的概率分別為$\frac{3}{4}$、$\frac{1}{2}$、$\frac{1}{3}$、$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.
(Ⅰ)求甲同學(xué)能進(jìn)入下一輪的概率;
(Ⅱ)用ξ表示甲同學(xué)本輪答題結(jié)束時(shí)答題的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望(均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d=2,S10=120.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若${b_n}={\sqrt{3}^{{a_n}-1}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,已知四邊形ABFD為直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$為等邊三角形,AD=DF=2AF=2,C為DF的質(zhì)點(diǎn),如圖2,將平面AED、BCF分別沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF、DF,設(shè)G為AE上任意一點(diǎn).
(1)證明:DG∥平面BCF;
(2)求折起后的各平面圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,從A地到B地設(shè)置了4條不同的網(wǎng)絡(luò)線路,它們通過的最大信息量分別為1,2,3,4,現(xiàn)從中任取三條網(wǎng)線連通A,B兩地(三條網(wǎng)線可通過的信息總量即三條網(wǎng)線各自的最大信息量之和).
(1)設(shè)三條網(wǎng)線可通過的最大信息總量為x,已知當(dāng)x≥7時(shí),可保證線路信息暢通,求線路信息暢通的概率.
(2)為保證網(wǎng)絡(luò)在x≥7時(shí)信息暢通的概率超過0.85,需要增加一條最大信息量為n(n≥3,n∈N)的網(wǎng)線與原有4條線路并聯(lián),問滿足條件的n的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線y=x+m與橢圓$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{25}$=1有兩個(gè)公共點(diǎn),則m的取值范圍是( 。
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$,且目標(biāo)函數(shù)z=2x+y的最大值為7,最小值為1,則$\frac{4y-\frac{c}{a}}{x+\frac{c}}$的取值范圍是(  )
A.[-$\frac{1}{3}$,$\frac{10}{3}$]B.[-$\frac{1}{3}$,$\frac{8}{3}$]C.[-$\frac{2}{3}$,$\frac{14}{3}$]D.[-$\frac{2}{3}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)滿足f(2x-3)=4x2+2x+1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x+a)-7x,a∈R,試求g(x)在[1,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案