【題目】某公司設(shè)計(jì)如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個(gè)半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長(zhǎng)為400m,則x取何值時(shí),矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為 m2 , 則x取何值時(shí),內(nèi)圈周長(zhǎng)最。
【答案】
(1)解:設(shè)半圓的半徑為r,
可得2x+2πr=400,即x+πr=200,
矩形ABCD的面積為S=2xr= xπr≤ ( )2= ,
當(dāng)且僅當(dāng)x=πr=100m時(shí),矩形的面積取得最大值 m2
(2)解:設(shè)半圓的半徑為r,
由題意可得πr2+2xr= ,可得2x= ﹣πr,
即有內(nèi)圈周長(zhǎng)c=2x+2πr= +πr,
由x≥80,可得 ﹣πr≥160,
解得0<πr≤90,
可得f(r)= +πr,f′(r)=π﹣ ,
即有f(r)在(0, ]上遞減,
即有πr=90,即x=80m時(shí),周長(zhǎng)c取得最小值340m
【解析】(1)設(shè)半圓的半徑為r,可得x+πr=200,矩形ABCD的面積為S=2xr= xπr,運(yùn)用基本不等式即可得到所求最小值及x的值;(2)設(shè)半圓的半徑為r,由題意可得2x= ﹣πr,即有內(nèi)圈周長(zhǎng)c=2x+2πr= +πr,由x≥80,求得r的范圍,設(shè)出f(r)= +πr,求得導(dǎo)數(shù),判斷單調(diào)性,即可得到所求最小值及x的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解基本不等式在最值問(wèn)題中的應(yīng)用(用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a、b、c是角A、B、C的對(duì)邊,則下列結(jié)論正確的序號(hào)是 . ①若a、b、c成等差數(shù)列,則B= ; ②若c=4,b=2 ,B= ,則△ABC有兩解;
③若B= ,b=1,ac=2 ,則a+c=2+ ; ④若(2c﹣b)cosA=acosB,則A= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點(diǎn),且CD=DE= ,CE=2EB=2.
(Ⅰ)證明:DE⊥平面PCD
(Ⅱ)求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,離心率為 ,右焦點(diǎn)為F.
(1)求橢圓C的方程;
(2)直線l與橢圓C相切于點(diǎn)P(不為橢圓C的左、右頂點(diǎn)),直線l與直線x=2交于點(diǎn)A,直線l與直線x=﹣2交于點(diǎn)B,請(qǐng)問(wèn)∠AFB是否為定值?若不是,請(qǐng)說(shuō)明理由;若是,請(qǐng)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(x+ ),則要得到其導(dǎo)函數(shù)y=f′(x)的圖象,只需將函數(shù)y=f(x)的圖象( )
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向右平移 個(gè)單位
D.向左平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=kx,
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求k的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)求f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣φ), 的圖象經(jīng)過(guò)點(diǎn) ,且相鄰兩條對(duì)稱軸的距離為 . (Ⅰ)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C的對(duì)邊,若 ,求∠A的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com