10.若點P(m-2,n+1),Q(n,m-1)關(guān)于直線l對稱,則l的方程是(  )
A.x-y+1=0B.x-y=0C.x+y+1=0D.x+y=0

分析 由對稱的特點,直線l經(jīng)過PQ的中點,且l垂直于PQ,運用中點坐標公式和直線垂直的條件,再由點斜式方程,即可得到.

解答 解:由對稱的特點,直線l經(jīng)過PQ的中點($\frac{m-2+n}{2}$,$\frac{n+m}{2}$),
且PQ的斜率為$\frac{m-n-2}{n-m+2}$=-1,則l的斜率為1,
則直線l方程為:y-$\frac{n+m}{2}$=x-$\frac{m-2+n}{2}$,
化簡即得,x-y+1=0,
故選A.

點評 本題考查點關(guān)于直線對稱的求法,考查直線方程的求法,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=sin2x+mcos2x的圖象關(guān)于直線x=$\frac{π}{8}$對稱,則f(x)在區(qū)間[0,π]的單調(diào)遞增區(qū)間為[0,$\frac{π}{8}$]和[$\frac{5π}{8}$,π] 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不等式$\frac{2-x}{x+4}$>1的解集是( 。
A.(-∞,-1)B.(-4,2)C.(-4,-1)D.(-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示,D,C,B三點在地面的同一直線上,DC=a,從C,D兩點測得A點的仰角分別為60°,30°,則A點離地面的高度AB等于$\frac{\sqrt{3}}{2}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.甲、乙兩人下棋,和棋的概率為$\frac{1}{2}$,乙獲勝的概率為$\frac{1}{3}$,則甲獲勝的概率和甲不輸?shù)母怕史謩e為( 。
A.$\frac{1}{6}$,$\frac{1}{6}$B.$\frac{1}{2}$,$\frac{2}{3}$C.$\frac{1}{6}$,$\frac{2}{3}$D.$\frac{2}{3}$,$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項和為Sn,若S3=12,S6=60,則S9=( 。
A.192B.300C.252D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=x2+(π-a)x,g(x)=cos(2x+a)則下列結(jié)論正確的是( 。
A.?a∈R,函數(shù)f(x)和g(x)都是奇函數(shù)B.?a∈R,函數(shù)f(x)和g(x)都是奇函數(shù)
C.?a∈R,函數(shù)f(x)和g(x)都是偶函數(shù)D.?a∈R,函數(shù)f(x)和g(x)都是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.冪函數(shù)f(x)=kxα(k,α∈R)的圖象經(jīng)過點$({\frac{1}{3}\;,\;\;9})$,則k+α=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)Sn為等差數(shù)列{an}的前n項和,若a1+2a4=a6,S3=3,則a9=15,S10=80.

查看答案和解析>>

同步練習(xí)冊答案