如圖所示,函數(shù)f(x)的圖象在P點(diǎn)處的切線方程是y=-x+8,則f′(5)=______.
根據(jù)圖象知,函數(shù)y=f(x)的圖象與在點(diǎn)P處的切線交于點(diǎn)P,
f(5)=-5+8=3,
f′(5)為函數(shù)y=f(x)的圖象在點(diǎn)P處的切線的斜率,
∴f′(5)=-1;
故答案為:-1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為實(shí)數(shù),),,⑴若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055705103515.png" style="vertical-align:middle;" />,求的表達(dá)式;
⑵設(shè),且函數(shù)為偶函數(shù),判斷是否大0?
⑶設(shè),當(dāng)時(shí),證明:對(duì)任意實(shí)數(shù),(其中的導(dǎo)函數(shù)) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)M={a,b,c},N={-2,0,2},則從M到N的映射種數(shù)為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)有兩個(gè)極值點(diǎn),且
(I)求的取值范圍,并討論的單調(diào)性;
(II)證明:           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

lim
n→∞
f(x0+3△x)-f(x0)
△x
=1
,則f′(x0)=( 。
A.1B.
1
3
C.3D.-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)定義在上的非負(fù)可導(dǎo)函數(shù),且滿足,對(duì)任意正數(shù), 若,則必有(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知過函數(shù)f(x)=x2的圖象上點(diǎn)P的切線斜率為2,則點(diǎn)P的坐標(biāo)為  (    )
A.(-1,1)B.(0,0)C.(1,1)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在曲線上取一點(diǎn)和它附近的點(diǎn),那么為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求函數(shù)的導(dǎo)數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案