【題目】設(shè)函數(shù)f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求證:a>0,且﹣2< <﹣1;
(Ⅱ)求證:函數(shù)y=f(x)在區(qū)間(0,1)內(nèi)有兩個不同的零點.

【答案】證明:(Ⅰ)∵函數(shù)f(x)=3ax2+2bx+c,f(0)>0,f(1)>0,
∴c>0,3a+2b+c>0,
由條件a+b+c=0,消去b,得a>c>0;
由條件a+b+c=0,消去c,得a+b<0,2a+b>0,即﹣2a<b<﹣a,

(Ⅱ)拋物線f(x)=3ax2+2bx+c的頂點為 ,
,得 ,即有 ,
又∵f(0)>0,f(1)>0, ,且圖象連續(xù)不斷,
∴函數(shù)y=f(x)在區(qū)間 內(nèi)分別有一個零點,
故函數(shù)y=f(x)在(0,1)內(nèi)有兩個不同的零點
【解析】(I)由a+b+c=0,f(0)>0,f(1)>0,消去b,得a>c>0,消去c,得a+b<0,2a+b>0,即﹣2a<b<﹣a,進(jìn)而可得a>0,且﹣2< <﹣1;(Ⅱ)拋物線f(x)=3ax2+2bx+c的頂點為 ,結(jié)合(1)中結(jié)論,可得 且f(0)>0,f(1)>0, ,且圖象連續(xù)不斷,由函數(shù)零點存在定理可得結(jié)論.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如表:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5


(1)求出y關(guān)于x的線性回歸方程 ;
(2)試預(yù)測加工10個零件需要多少小時?
(參考公式: = = ; ;)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.

(1)證明:MN∥平面PAD;
(2)若PB與平面ABCD所成的角為45°,求三棱錐C﹣BDN的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) A(x1 , y1),B(x2 , y2)是函數(shù)f(x)=x﹣ 的圖象上任意兩點,若 M為 A,B的中點,且 M的橫坐標(biāo)為1.
(1)求y1+y2;
(2)若Tn= ,n∈N* , 求 Tn;
(3)已知數(shù)列{an}的通項公式an= (n≥1,n∈N*),數(shù)列{an}的前n項和為Sn , 若不等式2nSn<m2n﹣4Tn+5對任意n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為 ,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設(shè)直線的斜率存在,取為,取直線的斜率為,請驗證是否為定值?若是,計算出該值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運動員的5次測試成績?nèi)缦聢D所示:

5 7

1

6 8

8 8 2

2

3 6 7

設(shè)s1 , s2分別表示甲、乙兩名運動員測試成績的標(biāo)準(zhǔn)差, 分別表示甲、乙兩名運動員測試成績的平均數(shù),則有(
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級有學(xué)生500人,其中男生300人,女生200人。為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學(xué)生,統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按照性別分為男、女兩組,再將兩組的分?jǐn)?shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(I)從樣本分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰為一男一女的概率;

(II)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進(jìn)場試銷 天,兩個廠家提供的返利,方案如下:甲廠家每天固定返利元,且每賣出一件產(chǎn)品廠家再返利元,乙廠家無固定返利,賣出件以內(nèi)(含件)的產(chǎn)品,每件產(chǎn)品廠家返利元,超出件的部分每件返利元,分別記錄其天內(nèi)的銷售件數(shù),得到如下頻數(shù)表:

甲廠家銷售件數(shù)頻數(shù)表:

銷售件數(shù)

天數(shù)

乙廠家銷售件數(shù)頻數(shù)表:

銷售件數(shù)

天數(shù)

(1) 現(xiàn)從甲廠家試銷的天中抽取兩天,求一天銷售量大于而另一天銷售量小于的概率;

(2)若將頻率視作概率,回答以下問題:

①記乙廠家的日返利為 (單位:元),求的分布列和數(shù)學(xué)期望;

②商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為商場作出選擇,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案